

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

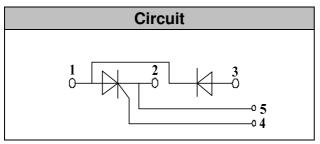
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

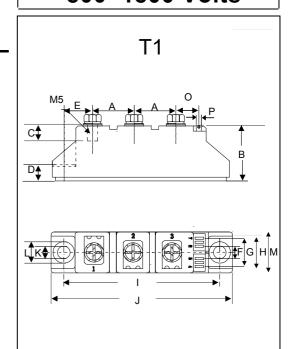
Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

Phone: (818) 701-4933 Fax: (818) 701-4939 MT60CB08T1 MT60CB12T1 MT60CB16T1 MT60CB18T1


Features

- Lead Free Finish/RoHS Compliant (NOTE 1)("P" Suffix designates RoHS Compliant. See ordering information)
- International standard package
- Heat transfer through aluminum oxide DBC ceramic isolated metal baseplate
- Glass passivated chip
- Simple Mounting


Applications

- Power Converters
- · Lighting Control
- DC Motor Control and Drives
- · Heat and temperature control

60 Amp THYRISTOR/DIODE MODULE 800~1800 Volts

		DIME	NSIONS		
	INCHES		MM		
DIM	MIN	MAX	MIN	MAX	NOTE
Α	.776	.799	19.70	20.30	
В	1.169	1.193	29.70	30.30	
С	.343	.366	8.70	9.30	
D	.323	.346	8.20	8.80	
Е	.602	.622	15.30	15.80	
F	.224	.248	5.70	6.30	
G	.539	.563	13.70	14.30	
Н	.657	.681	16.70	17.30	
_	3.138	3.161	79.70	80.30	
J	3.650	3.673	92.70	93.30	
K	.2	56	6.5	50	Ø
L	.421	.445	10.70	11.30	
М	.815	.839	20.70	21.30	
0	.579	.602	14.70	15.30	
Р	0.11	X0.032	2.8X	2.8X0.8	

Module Type

TYPE	VRRM	Vrsm
MT60CB08T1	800V	900V
MT60CB12T1	1200V	1300V
MT60CB16T1	1600V	1700V
MT60CB18T1	1800V	1900V

♦Diode

Maximum Ratings

Symbol	Item	Conditions	Values	Units
ΙD	Output Current(D.C.)	Tc=85℃	60	Α
IFSM	Surge forward current	t=10mS Tvj =45℃	1500	Α
i ² t	Circuit Fusing Consideration		11000	A ² s
Visol	Isolation Breakdown Voltage(R.M.S)	a.c.50HZ;r.m.s.;1min	3000	V
Tvj	Operating Junction Temperature		-40 to +125	$^{\circ}$ C
Tstg	Storage Temperature		-40 to +125	$^{\circ}$ C
Mt	Mounting Torque	To terminals(M5)	3±15%	Nm
Ms		To heatsink(M6)	5±15%	Nm
Weight	Module (Approximately)		100	g

Thermal Characteristics

Symbol	Item	Conditions	Values	Units
Rth(j-c)	Thermal Impedance, max.	Junction to Case	0.29	°C/W
Rth(c-s)	Thermal Impedance, max.	Case to Heatsink	0.10	°C/W

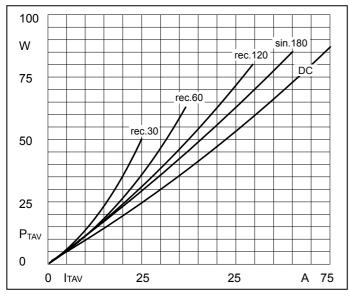
Electrical Characteristics

Symbol	Item	Conditions	Values			Units
Symbol	iteiii		Min.	Тур.	Max.	Uiilis
VFM	Forward Voltage Drop, max.	T=25°C IF =200A			1.65	V
IRRM	Repetitive Peak Reverse Current, max.	T _{vj} =25°C VRD=VRRM T _{vj} =125°C VRD=VRRM		≤0.5 ≤6		mA mA

♦Thyristor Maximum Ratings

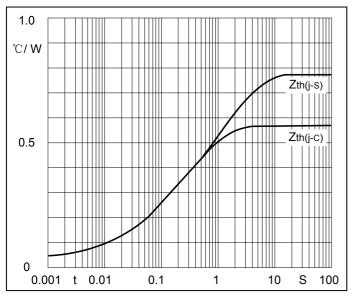
Symbol	Item	Conditions	Values	Units
I _{TAV}	Average On-State Current	Sine 180°;Tc=85℃	60	Α
I _{TSM}	Surge On-State Current	T_{VJ} =45°C t=10ms, sine T_{VJ} =125°C t=10ms, sine	1500 1250	Α
i ² t	Circuit Fusing Consideration	T_{VJ} =45°C t=10ms, sine T_{VJ} =125°C t=10ms, sine	11000 8000	A2s
Visol	Isolation Breakdown Voltage(R.M.S)	a.c.50HZ;r.m.s.;1min	3000	V
Tvj	Operating Junction Temperature		-40 to +125	$^{\circ}\!\mathbb{C}$
Tstg	Storage Temperature		-40 to +125	$^{\circ}\mathbb{C}$
Mt	Mounting Torque	To terminals(M5)	$3\pm15\%$	Nm
Ms		To heatsink(M6)	5±15%	Nm
di/dt	Critical Rate of Rise of On-State Current	T_{VJ} = T_{VJM} , 2/3 V_{DRM} , I_{G} =500mA Tr<0.5us,tp>6us	150	A/us
dv/dt	Critical Rate of Rise of Off-State Voltage, min.	T _J =T _{VJM} ,2/3V _{DRM} linear voltage rise	1000	V/us
а	Maximum allowable acceleration		50	m/s ²

Thermal Characteristics


Symbol	Item	Conditions	Values	Units
Rth(j-c)	Thermal Impedance, max.	Junction to Case	0.57	℃/W
Rth(c-s)	Thermal Impedance, max.	Case to Heatsink	0.20	°C/W

Electrical Characteristics

Ola a l	Itam	O a maliti a ma	Value	S	Haita
Symbol	Item	Conditions			Units
V_{TM}	Peak On-State Voltage, max.	T=25℃ I _T =200A		1.65	V
I _{RRM} /I _{DRM}	Repetitive Peak Reverse Current, max. / Repetitive Peak Off-State Current, max.	$T_{VJ}=T_{VJM}$, $V_R=V_{RRM}$, $V_D=V_{DRM}$		15	mA
V _{TO}	On state threshold voltage	For power-loss calculations only (T _{VJ} =125℃)		0.9	V
r _T	Value of on-state slope resistance. max	$T_{VJ} = T_{VJM}$		3.5	mΩ
V_{GT}	Gate Trigger Voltage, max.	T _{VJ} =25℃ , V _D =6V		3.0	V
I _{GT}	Gate Trigger Current, max.	T_{VJ} =25°C , V_D =6V		150	mA
$V_{\sf GD}$	Non-triggering gate voltage, max.	T_{VJ} =125°C, V_D =2/3 V_{DRM}		0.25	V
I_{GD}	Non-triggering gate current, max.	T_{VJ} =125°C, V_D =2/3 V_{DRM}		6	mA
Ι _L	Latching current, max.	T_{VJ} =25°C , R_G = 33 Ω	300	600	mA
I _H	Holding current, max.	T _{VJ} =25℃ , V _D =6V	150	250	mA
tgd	Gate controlled delay time	TVJ=25℃, IG=1A, diG/dt=1A/us	1		us
tq	Circuit commutated turn-off time	$T_{VJ} = T_{VJM}$	80		us


Performance Curves

90 Α = bc = 72 sin.180 rec.120 54 rec.60 36 rec.30 18 I_{TAVM} 0 0 Tc 100 50 ℃ 130

Fig1. Power dissipation

Fig2.Forward Current Derating Curve

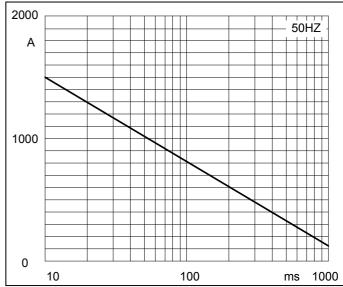


Fig4. Max Non-Repetitive Forward Surge Current

Performance Curves

Fig5. Forward Characteristics

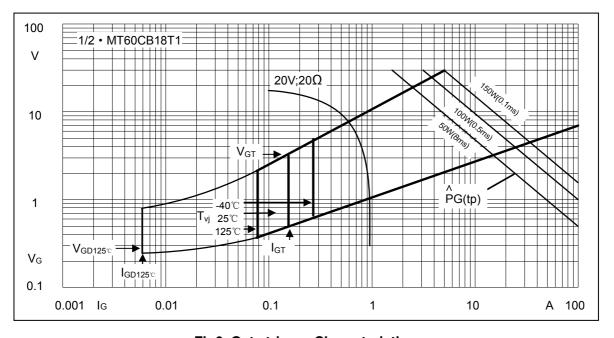


Fig6. Gate trigger Characteristics

Ordering Information:

Device	Packing
Part Number-BP	Bulk: 10PCS/BOX;100PCS/CTN

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.