: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- Internal control latches and address decoder
- Short set-up and hold times
- Wide operating voltage: 4.5 V to 13.2 V
- 12Vpp analog signal capability
- $R_{\mathrm{ON}} 65 \Omega$ max. @ $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, 25 \times \mathrm{C}$
- $\Delta \mathrm{R}_{\mathrm{ON}} \leq 10 \Omega @ \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, 25^{\circ} \mathrm{C}$
- Full CMOS switch for low distortion
- Minimum feedthrough and crosstalk
- Separate analog and digital reference supplies
- Low power consumption ISO-CMOS technology

Applications

- Key systems
- PBX systems
- Mobile radio
- Test equipment /instrumentation
- Analog/digital multiplexers
- Audio/Video switching

September 2011

Ordering Information

MT8815AP1 44 Pin PLCC* Tubes
MT8815APR1 44 Pin PLCC* Tape \& Reel MT8815AE1 40 Pin PDIP* Tubes
*Pb Free Matte Tin
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Description

The Zarlink MT8815 is fabricated in Zarlink's ISOCMOS technology providing low power dissipation and high reliability. The device contains a 8×12 array of crosspoint switches along with a 7 to 96 line decoder and latch circuits. Any one of the 96 switches can be addressed by selecting the appropriate seven address bits. The selected switch can be turned on or off by applying a logical one or zero to the DATA input. V_{SS} is the ground reference of the digital inputs. The range of the analog signal is from V_{DD} to V_{EE}.

Figure 1 - Functional Block Diagram

Change Summary

Changes from the December 2008 issue to the September 2011 issue.

Page	Item	Change
1	Ordering Information	Removed leaded packages as per PCN notice.

Changes from August 2005 to December 2008 issue.

Page	Item	Change
1	Ordering Information	MT8815AE removed - obsolete. Added pb free part numbers.

Figure 2 - Pin Connections

Pin Description

Pin \#		Name	Description
PDIP	PLCC		
1	1	Y3	Y3 Analog (Input/Output): this is connected to the Y3 column of the switch array.
2	2	AY2	Y2 Address Line (Input).
3	3	RESET	Master RESET (Input): this is used to turn off all switches. Active High.
4,5	4,5	AX3,AX0	X3 and X0 Address Lines (Inputs): these are used to select X3 and X0 rows of switches.
6,7	6-8	NC	No Connection.
8-13	9-14	X6-X11	X6-X11 Analog (Inputs/Outputs): these are connected to the X6-X11 rows of the switch array.

Pin Description

Pin \#		Name	Description
PDIP	PLCC		
14	15,16	NC	No Connection
15	17	Y7	Y7 Analog (Input/Output): this is connected to the Y7 column of the switch array.
16	18	V_{SS}	Digital Ground Reference (Input).
17	19	Y6	Y6 Analog (Input/Output): this is connected to the Y6 column of the switch array.
18	20	STROBE	STROBE (Input): enables function selected by address and data. Address must be stable before STROBE goes high and DATA must be stable on the falling edge of the STROBE. Active High.
19	21	Y5	Y5 Analog (Input/Output): this is connected to the Y5 column of the switch array.
20	22	V_{EE}	Negative Power Supply.
21	23	Y4	Y4 Analog (Input/Output): this is connected to the Y4 column of the switch array.
22, 23	24,25	AX1,AX2	X1 and X2 Address Lines (Inputs).
24, 25	26,27	AY0,AY1	Y0 and Y1 Address Lines (Inputs).
26, 27	28-31	NC	No Connection.
28-33	32-37	X5-X0	X5-X0 Analog (Inputs/Outputs): these are connected to the X5-X0 rows of the switch array.
34	38	NC	No Connection.
35	39	YO	YO Analog (Input/Output): this is connected to the Y0 column of the switch array.
36	40	V_{DD}	Positive Power Supply.
37	41	Y1	Y1 Analog (Input/Output): this is connected to the Y1 column of the switch array.
38	42	DATA	DATA (Input): a logic high input will turn on the selected switch and a logic low will turn off the selected switch. Active High.
39	43	Y2	Y2 Analog (Input/Output): this is connected to the Y2 column of the switch array.
40	44	NC	No Connection.

Functional Description

The MT8815 is an analog switch matrix with an array size of 8×12. The switch array is arranged such that there are 8 columns by 12 rows. The columns are referred to as the Y inputs/outputs and the rows are the X inputs/outputs. The crosspoint analog switch array will interconnect any X I/O with any Y I/O when turned on and provide a high degree of isolation when turned off. The control memory consists of a 96 bit write only RAM in which the bits are selected by the address inputs (AYO-AY2, AXO-AX3). Data is presented to the memory on the DATA input. Data is asynchronously written into memory whenever the STROBE input is high and is latched on the falling edge of STROBE. A logical " 1 " written into a memory cell turns the corresponding crosspoint switch on and a logical " 0 " turns the crosspoint off. Only the crosspoint switches corresponding to the addressed memory location are altered when data is written into memory. The remaining switches retain their previous states. Any combination of X and Y inputs/outputs can be interconnected by establishing appropriate patterns in the control memory. A logical " 1 " on the RESET input will asynchronously return all memory locations to logical "0" turning off all crosspoint switches. Two voltage reference pins (V_{SS} and V_{EE}) are provided for the MT8815 to enable switching of negative analog signals. The range for digital signals is from $V_{D D}$ to $V_{S S}$ while the range for analog signals is from $V_{D D}$ to $V_{E E} . V_{S S}$ and $V_{E E}$ pins can be tied together if a single voltage reference is needed.

Address Decode

The seven address inputs along with the STROBE are logically ANDed to form an enable signal for the resettable transparent latches. The DATA input is buffered and is used as the input to all latches. To write to a location, RESET must be low while the address and data are set up. Then the STROBE input is set high and then low causing the data to be latched. The data can be changed while STROBE is high, however, the corresponding switch will turn on and off in accordance with the DATA input. DATA must be stable on the falling edge of STROBE in order for correct data to be written to the latch.

Absolute Maximum Ratings*- Voltages are with respect to V_{EE} unless otherwise stated.

	Parameter	Symbol	Min.	Max.	Units
1	Supply Voltage	V_{DD}	-0.3	15.0	V
		$\mathrm{~V}_{\mathrm{SS}}$	-0.3	$\mathrm{~V}_{\mathrm{DD}^{+}} 0.3$	V
2	Analog Input Voltage	$\mathrm{V}_{\mathrm{INA}}$	-0.3	$\mathrm{~V}_{\mathrm{DD}^{+}}+0.3$	V
3	Digital Input Voltage	V_{IN}	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{~V}_{\mathrm{DD}^{+}}+0.3$	V
4	Current on any I/O Pin	I		± 15	mA
5	Storage Temperature	T_{S}	-65	+150	${ }^{\circ} \mathrm{C}$
6	Package Power Dissipation \quad PLASTIC DIP	P_{D}		0.6	W

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions - Voltages are with respect to V_{EE} unless otherwise stated.

	Characteristics	Sym.	Min.	Typ.	Max.	Units	Test Conditions
1	Operating Temperature	T_{O}	-40	25	85	${ }^{\circ} \mathrm{C}$	
2	Supply Voltage	V_{DD}	4.5		13.2	V	
3	Analog Input Voltage	V_{SS}	V_{EE}		$\mathrm{V}_{\mathrm{DD}}-4.5$	V	
4	Digital Input Voltage	$\mathrm{V}_{\mathrm{INA}}$	V_{EE}		V_{DD}	V	

DC Electrical Characteristics ${ }^{\dagger}$ - Voltages are with respect to $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$ unless otherwise stated.

	Characteristics	Sym.	Min.	Typ. ${ }^{\ddagger}$	Max.	Units	Test Conditions
1	Quiescent Supply Current	I_{DD}		1	100	$\mu \mathrm{A}$	All digital inputs at $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ or $V_{D D}$
				0.4	1.5	mA	All digital inputs at $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}+$ $\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{SS}}=7.0 \mathrm{~V}$
				5	15	mA	All digital inputs at $\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$
2	Off-state Leakage Current (See G. 9 in Appendix)	IofF		± 1	± 500	nA	$I V_{X_{i}}-V_{Y j} I=V_{D D}-V_{E E}$ $\text { See Appendix, Fig. A. } 1$
3	Input Logic "0" level	V_{IL}			$0.8+\mathrm{V}_{\text {SS }}$	V	$\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
4	Input Logic "1" level	V_{IH}	$2.0+\mathrm{V}_{\text {SS }}$			V	$\mathrm{V}_{\mathrm{SS}}=6.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
5	Input Logic "1" level	V_{IH}	3.3			V	
6	Input Leakage (digital pins)	$\mathrm{I}_{\text {LEAK }}$		0.1	10	$\mu \mathrm{A}$	All digital inputs at $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{SS}}$ or $V_{D D}$

[^0]DC Electrical Characteristics- Switch Resistance - V_{DC} is the external DC offset applied at the analog I/O pins.

	Characteristics	Sym	$25^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		Units	Test Conditions
			Typ.	Max.	Typ.	Max.	Typ.	Max.		
1	On-state $V_{D D}=12 \mathrm{~V}$ Resistance $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (See G.1, G.2, G .3 in Appendix)	R_{ON}	$\begin{gathered} 45 \\ 55 \\ 120 \end{gathered}$	$\begin{gathered} 65 \\ 75 \\ 185 \end{gathered}$		$\begin{aligned} & 75 \\ & 85 \\ & 215 \end{aligned}$		$\begin{gathered} 80 \\ 90 \\ 225 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{~V}_{\mathrm{Xi}_{\mathrm{i}}}-\mathrm{V}_{\mathrm{Yj}}=0.4 \mathrm{~V} \\ & \text { See Appendix, Fig. A. } 2 \end{aligned}$
2	Difference in on-state resistance between two switches (See G. 4 in Appendix)	$\Delta \mathrm{R}_{\text {ON }}$	5	10		10		10	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=0, \\ & \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{~V}_{\mathrm{xi}} \mathrm{~V}_{\mathrm{YIJ}^{\prime}=0.4 \mathrm{~V}} \\ & \text { See Appendix, Fig. A. } 2 \end{aligned}$

AC Electrical Characteristics ${ }^{\dagger}$ - Crosspoint Performance-Voltages are with respect to $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EE}}=-7 \mathrm{~V}$, unless otherwise stated.

	Characteristics	Sym.	Min.	Typ. ${ }^{\ddagger}$	Max.	Units	Test Conditions
1	Switch I/O Capacitance	$\mathrm{C}_{\text {S }}$		20		pF	$\mathrm{f}=1 \mathrm{MHz}$
2	Feedthrough Capacitance	C_{F}		0.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
3	Frequency Response Channel "ON" 20LOG $\left(\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{Xi}}\right)=-3 \mathrm{~dB}$	$\mathrm{F}_{3 \mathrm{~dB}}$		45		MHz	Switch is "ON"; $\mathrm{V}_{\text {INA }}=2 \mathrm{Vpp}$ sinewave; $R_{L}=1 \mathrm{k} \Omega$ See Appendix, Fig. A. 3
4	Total Harmonic Distortion (See G.5, G. 6 in Appendix)	THD		0.01		\%	Switch is "ON"; $\mathrm{V}_{\text {INA }}=2 \mathrm{Vpp}$ sinewave $f=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
5	```Feedthrough Channel "OFF" Feed.=20LOG (V (VUT (See G. }8\mathrm{ in Appendix)```	FDT		-95		dB	```All Switches "OFF"; \(\mathrm{V}_{\text {INA }}=\) 2 Vpp sinewave \(\mathrm{f}=1 \mathrm{kHz}\); \(R_{L}=1 k \Omega\). See Appendix, Fig. A. 4```
6	Crosstalk between any two channels for switches Xi-Yi and $X_{j}-\mathrm{Yj}$. Xtalk=20LOG $\left(V_{Y_{j}} / V_{X_{i}}\right)$. (See G. 7 in Appendix).	$\mathrm{X}_{\text {talk }}$		-45		dB	$\begin{aligned} & \mathrm{V}_{\text {INA }}=2 \mathrm{Vpp} \text { sinewave } \\ & \mathrm{f}=10 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=75 \Omega . \end{aligned}$
				-90		dB	$\mathrm{V}_{\text {INA }}=2 \mathrm{Vpp}$ sinewave $\mathrm{f}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=600 \Omega$.
				-85		dB	$\begin{aligned} & \mathrm{V}_{\text {INA }}=2 \mathrm{Vpp} \text { sinewave } \\ & \mathrm{f}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega . \end{aligned}$
				-80		dB	$\mathrm{V}_{\mathrm{INA}}=2 \mathrm{Vpp}$ sinewave $f=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ Refer to Appendix, Fig. A. 5 for test circuit.
7	Propagation delay through switch	$\mathrm{t}_{\text {PS }}$			30	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

[^1]AC Electrical Characteristics ${ }^{\dagger}$ - Control and I/O Timings- Voltages are with respect to $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$,
$V_{E E}=-7 \mathrm{~V}$, unless otherwise stated.

	Characteristics	Sym.	Min.	Typ. \ddagger	Max.	Units	Test Conditions
1	Control Input crosstalk to switch (for DATA, STROBE, Address)	$\mathrm{CX}_{\text {talk }}$		30		mVpp	$\mathrm{V}_{I N}=3 \mathrm{~V}$ squarewave; $\mathrm{R}_{I N}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$. See Appendix, Fig. A. 6
2	Digital Input Capacitance	$\mathrm{C}_{\text {DI }}$		10		pF	$\mathrm{f}=1 \mathrm{MHz}$
3	Switching Frequency	F_{O}			20	MHz	
4	Setup Time DATA to STROBE	t_{DS}	10			ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
5	Hold Time DATA to STROBE	t_{DH}	10			ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{1}$
6	Setup Time Address to STROBE	$\mathrm{t}_{\text {AS }}$	10			ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{1}$
7	Hold Time Address to STROBE	t_{AH}	10			ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} 1$
8	STROBE Pulse Width	tSPW	20			ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{1}$
9	RESET Pulse Width	$t_{\text {RPW }}$	40			ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} 1$
10	STROBE to Switch Status Delay	t_{s}		40	100	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{1}$
11	DATA to Switch Status Delay	t_{D}		50	100	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} 1$
12	RESET to Switch Status Delay	t_{R}		35	100	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}{ }^{1}$

\dagger Timing is over recommended temperature range. See Fig. 3 for control and I/O timing details.
Digital Input rise time (tr) and fall time (tf) $=5 \mathrm{~ns}$.
\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
1 Refer to Appendix, Fig. A. 7 for test circuit.

Figure 3 - Control Memory Timing Diagram

[^2]| AXO | AX1 | AX2 | AX3 | AYO | AY1 | AY2 | Connection |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | X0-Y0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | X1-Y0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | X2-Y0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | Хз-Y0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | X4-Y0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | X5-Y0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | No Connection |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | No Connection |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | X6-Y0 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | X7-Y0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | X8-Y0 |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 | X9-Y0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | X10-Y0 |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | X11-Y0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | No Connection |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | No Connection |
| \downarrow | \downarrow | \downarrow | \downarrow | \downarrow | $\stackrel{1}{1}$ | 0 | X0-Y1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | X11-Y1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | XO-Y2 |
| \downarrow | |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | X11-Y2 |
| \downarrow | 0 | 0 | \downarrow | \downarrow | \downarrow | \downarrow | X0-Y3 |
| 1 | 0 | 1 | 1 | 1 | 1 | 0 | X11-Y3 |
| 0 | 0 | 0 | 0 | 0 | \downarrow | 1 | X0-Y4 |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | X11-Y4 |
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | X0-Y5 |
| \downarrow |
1	0	1	1	1	0	1	X11-Y5
\downarrow	XO-Y6						
1	0	1	1	0	1	1	X11-Y6
0	0	1	0	\downarrow	\downarrow	\downarrow	X0-Y7
1	0	1	1	1	1	1	X11-Y7

Table 1 - Address Decode Truth Table
This address has no effect on device status.

Notes:

1. All dimensions and tolerances conform to ANSI Y14.5M-1982
2. Dimensions D1 and E1 do not include mould protrusions.

Allowable mould protrusion is $0.010^{\prime \prime}$ per side. Dimensions D1 and E1 include mould protrusion mismatch and are determined at the parting line, that is D1 and E1 are measured at the extreme material condition at the upper or lower parting line.
3. Controlling dimensions in Inches.
4. " N " is the number of terminals.
5. Not To Scale
6. Dimension R required for 120° minimum bend.

Seating Plane

Symbol	Control Dimensions in inches	Altern. Dimensions in millimetres			
	MIN	MAX	MIN	MAX	
A	0.165	0.180	4.19	4.57	
A1	0.090	0.120	2.29	3.05	
A2	0.062	0.083	1.57	2.11	
A3	0.042	0.056	1.07	1.42	
A4	0.020	-	0.51	-	
D	0.685	0.695	17.40	17.65	
D1	0.650	0.656	16.51	16.66	
D2	0.291	0.319	7.39	8.10	
E	0.685	0.695	17.40	17.65	
E1	0.650	0.656	16.51	16.66	
E2	0.291	0.319	7.39	8.10	
B	0.026	0.032	0.66	0.81	
b	0.013	0.021	0.33	0.53	
e	0.050	BSC	1.27	BSC	
	Pin features				
ND	11				
NE	11				
N	44				
Note	Square				
Conforms to JEDEC MS-018AC Iss. A					

For more information about all Zarlink products visit our Web Site at

 www.zarlink.comInformation relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability othervise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $\mathrm{I}_{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}_{2} \mathrm{C}$ Patent rights to use these components in an $\mathrm{I}_{2} \mathrm{C}$ System, provided that the system conforms to the $\mathrm{I}_{2} \mathrm{C}$ Standard Specification as defined by Philips.
Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Zarlink Semiconductor Inc.

[^0]: \dagger DC Electrical Characteristics are over recommended temperature range.
 \ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

[^1]: \dagger Timing is over recommended temperature range. See Fig. 3 for control and I/O timing details.
 \ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
 Crosstalk measurements are for Plastic DIPS only, crosstalk values for PLCC packages are approximately 5 dB better.

[^2]: * See Appendix, Fig. A. 7 for switching waveform

