imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MT93L04 **128-Channel Voice Echo Canceller**

Data Sheet

January 2006

Features

- MT93L04 is a Multi-chip Module (MCM) consisting of 4 MT93L00 devices thus providing 128 channels of 64 msec Echo Cancellation
- Each device (MT93L00) is independent of the each other
- Each device has the capability of cancelling echo ٠ over 32 channels
- The MCM module provides more than 40% board • space savings
- Each device (MT93L00) can be programmed independently in any mode e.g back to back or extended delay to provide capability of cancelling different echo tails
- Each device has the same Jtag identification code

Applications

- Voice over IP network gateways
- Voice over ATM, Frame Relay
- T1/E1/J1 multichannel echo cancellation
- Wireless base stations

Ordering Information				
MT93L04AG MT93L04AG2	365 Ball BGA 365 Ball BGA**	Trays Trays		
**Pb Free Tin/Silver/Copper				
-40°C to +85°C				

- Echo Canceller pools
- DCME, satellite and multiplexer systems

Description

The MT93L04 Voice Echo Canceller implements a cost effective solution for telephony voice-band echo cancellation conforming to ITU-T G.168 requirements. The MT93L04 architecture contains 64 groups of two echo cancellers (ECA and ECB) which can be configured to provide two channels of 64 milliseconds or one channel of 128 milliseconds echo cancellation. This provides 128 channels of 64 milliseconds to 64 channels of 128 milliseconds echo cancellation or any combination of the two configurations. The MT93L04 supports ITU-T G.165 and G.164 tone disable requirements.

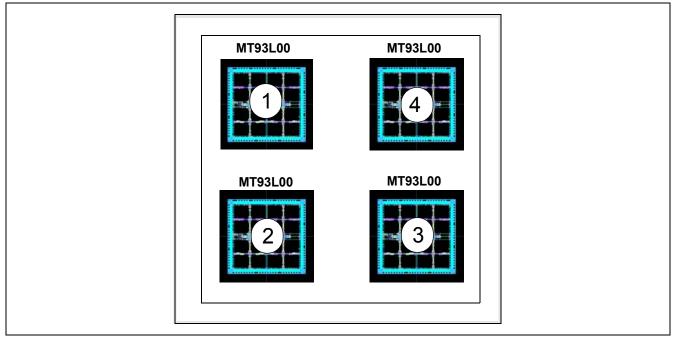


Figure 1 - MT93L04 is MULTI-CHIP Module Consisting of 4 MT93L00 Devices

Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2001-2006, Zarlink Semiconductor Inc. All Rights Reserved.

1

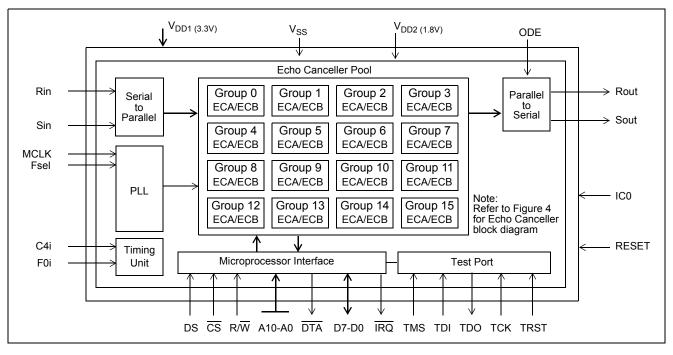


Figure 2 - Functional Block Diagram for Single MT93L00 (32 channels)

Features of Single MT93L00

- Independent multiple channels of echo cancellation; from 32 channels of 64 ms to 16 channels of 128 ms with the ability to mix channels at 128 ms or 64 ms in any combination
- Independent Power Down mode for each group of 2 channels for power management
- ITU-T G.165 and G.168 compliant
- Field proven, high quality performance
- Compatible to ST-BUS and GCI interface at 2 Mb/s serial PCM
- PCM coding, μ /A-Law ITU-T G.711 or sign magnitude
- Per channel Fax/Modem G.164 2100 Hz or G.165 2100 Hz phase reversal Tone Disable
- Per channel echo canceller parameters control
- Transparent data transfer and mute
- Fast reconvergence on echo path changes
- · Non-Linear Processor with high quality subjective performance
- Protection against narrow band signal divergence
- Offset nulling of all PCM channels
- 10 MHz or 20 MHz master clock operation
- 3.3 V pads and 1.8 V Logic core operation with 5-Volt tolerant inputs
- No external memory required
- Non-multiplexed microprocessor interface
- IEEE-1149.1 (JTAG) Test Access Port

MT93L04

$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	
$ \begin{array}{c} \textbf{B} \\ \hline \textbf{F} \\ \textbf{F} \\$	A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	в
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	с
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	G
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	н
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ŀ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3 L
$ \mathbf{P} \begin{bmatrix} \operatorname{Tsig}(9) = d^2 & \operatorname{Tsig}(13) = d^2 & \operatorname{Tsig}(13) = d^2 & \operatorname{Tsig}(6) = d^2 \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & $	3 M
$ \mathbf{R} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13 N
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13 P
T \bigcirc	3 R
$\mathbf{U} \qquad \qquad$	т
$\mathbf{U} \bigcirc \mathbf{C} $	U
$\mathbf{V} \begin{bmatrix} DT1_d2 \\ \bigcirc \\ Step_d2 \end{bmatrix} \xrightarrow{AT1_d2} \xrightarrow{Test_en_d2} \xrightarrow{D(2)_d2} \xrightarrow{D(2)_d2} \xrightarrow{A(1)_d2} \xrightarrow{D(1)_d2} \xrightarrow{DT1_d3} \xrightarrow{TD1_d3} \xrightarrow{TD1_d3} \xrightarrow{D(3)_d3} \xrightarrow{D(6)_d3} \xrightarrow{A(1)_d3} \xrightarrow{A(1)_d3} \xrightarrow{D(2)_d3} \xrightarrow{D(2)_d3} $	v
$\mathbf{W} \begin{bmatrix} Fsel d2 & DD0 d2 & DSB d2 & D(3) d2 & A(2) d2 \\ \bigcirc PLLVDD d2 & Trstb d2 & D(0) d2 & D(6) d2 & A(2) d2 \\ \bigcirc D(6) d2 & D(6) d2 & D(6) d2 & A(3) d2 \\ \end{bmatrix} \begin{bmatrix} SG1 d3 & TMS d3 & RESETB d3 & D(0) d3 \\ \bigcirc D(3) d3 & D(3) d3 \\ \bigcirc PLLVDD d3 & TCK d3 & CSB d3 & D(3) d3 \\ \end{bmatrix} \begin{bmatrix} D(3) d3 & A(2) d3 \\ D(3) d3 & A(2) d3 \\ D(3) d3 & A(2) d3 \\ D(3) d3 & D(3) d3 \\ D(3) d3 & A(2) d3 \\ D(3) d3 & D(3) d3 \\ D(3$	w
$ \mathbf{Y} \bigcirc \bigcirc$	Y
TDI_d2 RESETB_d2 D(1)_d2 D(5)_d2 A(10)_d2 PLLVSS1_d3 TDO_d3 IRQB_d3 DTAB_d3 D(4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
Δ - A1 corner is identified by metallized markings.	

Figure 3 - 365 Ball BGA

Pin Description

Signal Name	Signal Type	BGA Ball #	Signal Description
V _{DD1} = 3.3V	Power	R6, R8, R13, R15, N15,H15, F15,F13,F8,F6,H6,N6, P6,	Positive Power Supply. Nominally 3.3 volt. V _{DD1} = I/O Voltage
V _{DD2} = 1.8V	Power	R9,R10,R11,R12,M15, L15,K15,J15,F12,F11, F10,F9,J6, K6, L6,M6,	Positive Power Supply. Nominally 1.8 volt. V _{DD2} = Core Voltage
VSS	Power	H8,H9,H10,H11,H12, H13, J8, J9,J10,J11, J12,J13,K8,K9,K10,K11,K1 2,K13 L8,L9,L10, L11,L12,L13,M8,M9,M10,M 11,M12, M13, N8, N9,N10,N11,N12,N13	Ground
DEVICE 1			
TMS_d1	User Signal	J4	Test Mode Select (3.3 V Input). JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up when not driven.
TDI_d1	User Signal	J3	Test Serial Data In (3.3 V Input). JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up when not driven.
TDO_d1	User Signal	J2	Test Serial Data Out (Output). JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG scan is not enabled.
TCK_d1	User Signal	J1	Test Clock (3.3 V Input). Provides the clock to the JTAG test logic.
TRSTB_d1	User Signal	К1	Test Reset (3.3 V Input). Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low on power-up or held low, to ensure that the MT93L00 is in the normal functional mode. This pin is pulled by an internal pull-down when not driven.
Test_En_d1	ICO	H1	Internal Connection. Connected to VSS for normal operation
RESETB_d1	User Signal	K2	Device Reset (Schmitt Trigger Input). An active low resets the device and puts the MT93L00 into a low-power stand-by mode. When the RESET pin is returned to logic high and a clock is applied to the MCLK pin, the device will automatically execute initialization routines, which preset all the Control and Status Registers to their default power-up values.

Signal Name	Signal Type	BGA Ball #	Signal Description
IRQB_d1	User Signal	J5	Interrupt Request (Open Drain Output). This output goes low when an interrupt occurs in any channel. IRQ returns high when all the interrupts have been read from the Interrupt FIFO Register. A pull-up resistor (1 K typical) is required at this output.
DSB_d1	User Signal	H2	Data Strobe (Input). This active low input works in conjunction with CS to enable the read and write operations.
CSB_d1	User Signal	К3	Chip Select (Input). This active low input is used by a microprocessor to activate the microprocessor port.
R/WB_d1	User Signal	H3	Read/Write (Input). This input controls the direction of the data bus lines (D7-D0) during a microprocessor access.
DTAB_d1	User Signal	K4	Data Transfer Acknowledgment (Open Drain Output). This active low output indicates that a data bus transfer is completed. A pull-up resistor (1 K typical) is required at this output.
D(0)_d1	User Signal	H4	
D(1)_d1	User Signal	K5	
D(2)_d1	User Signal	H5	Data Bus D0 - D7 (Bidirectional). These pins
D(3)_d1	User Signal	G4	form the 8-bit bidirectional data bus of the microprocessor port.
D(4)_d1	User Signal	G5	
D(5)_d1	User Signal	F4	
D(6)_d1	User Signal	F5	
D(7)_d1	User Signal	E5	
A(0)_d1	User Signal	D4	
A(1)_d1	User Signal	E6	
A(2)_d1	User Signal	D5	Address A0 to A10 (Input). These inputs provide
A(3)_d1	User Signal	E7	the A10 - A0 address lines to the internal registers.
A(4)_d1	User Signal	D7	
A(5)_d1	User Signal	E8	
A(6)_d1	User Signal	E10	
A(7)_d1	User Signal	D8	
A(8)_d1	User Signal	D10	
A(9)_d1	User Signal	C10	
A(10)_d1	User Signal	B10	

Signal Name	Signal Type	BGA Ball #	Signal Description
A_IC1_d1	ICO	E9	Internal Connection. Connected to VSS for normal operation
A_IC2_d1	ICO	A8	Internal Connection. Connected to VSS for normal operation
Tsig(0)_d1	NC	A10	No connection. The pin must be left open for normal operation.
Tsig(1)_d1	NC	A9	No connection. The pin must be left open for normal operation.
Tsig(2)_d1	NC	B9	No connection. The pin must be left open for normal operation.
Tsig(3)_d1	NC	C9	No connection. The pin must be left open for normal operation.
Tsig(4)_d1	NC	D9	No connection. The pin must be left open for normal operation.
Tsig(5)_d1	NC	C8	No connection. The pin must be left open for normal operation.
Tsig(6)_d1	NC	B8	No connection. The pin must be left open for normal operation.
Tsig(7)_d1	NC	A7	No connection. The pin must be left open for normal operation.
ODE_d1	User Signal	B7	Output Drive Enable (Input). This input pin is logically AND'd with the ODE bit-6 of the Main Control Register. When both ODE bit and ODE input pin are high, the Rout and Sout ST-BUS outputs are enabled.When the ODE bit is low or the ODE input pin is low, the Rout and Sout ST- BUS outputs are high impedance.
Sout_d1	User Signal	C7	Send PCM Signal Output (Output). Port 1 TDM data output streams.Sout pin outputs serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Rout_d1	User Signal	A6	Receive PCM Signal Output (Output). Port 2 TDM data output streams. Rout pin outputs serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Sin_d1	User Signal	B6	Send PCM Signal Input (Input). Port 2 TDM data input streams. Sin pin receives serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Rin_d1	User Signal	D6	Receive PCM Signal Input (Input). Port 1 TDM data input streams.Rin pin receives serial TDM data streams at 2.048 Mb/s with 32 channels per stream.

Signal Name	Signal Type	BGA Ball #	Signal Description
FOIb_d1	User Signal	A5	Frame Pulse (Input). This input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS or GCI interface specifications.
C4IB_d1	User Signal	C6	Serial Clock (Input). 4.096 MHz serial clock for shifting data in/out on the serial streams (Rin, Sin, Rout, Sout).
SC_set_d1	ICO	B5	Internal Connection. Connected to VSS for normal operation
SM_mclk_d1	ICO	A4	Internal Connection. Connected to VSS for normal operation
ST_mclk_d1	ICO	B4	Internal Connection. Connected to VSS for normal operation
SC_en_d1	ICO	C5	Internal Connection. Connected to VSS for normal operation
SC_In_d1	ICO	A3	Internal Connection. Connected to VSS for normal operation
SC_Reset:_d1	ICO	B3	Internal Connection. Connected to VSS for normal operation
SC_Fclk_d1	ICO	A2	Internal Connection. Connected to VSS for normal operation
Tsig(8)_d1	NC	C4	Internal Connection. The pin must be left open for normal operation.
Tsig(9)_d1	NC	C3	Internal Connection. The pin must be left open for normal operation.
Tsig(10)_d1	NC	D3	Internal Connection. The pin must be left open for normal operation.
Tsig(11)_d1	NC	B2	Internal Connection. The pin must be left open for normal operation.
Tsig(12)_d1	NC	A1	Internal Connection. The pin must be left open for normal operation.
Tsig(13)_d1	NC	C2	Internal Connection. The pin must be left open for normal operation.
Tsig(14)_d1	NC	E3	Internal Connection. The pin must be left open for normal operation.
Tsig(15)_d1	NC	B1	Internal Connection. The pin must be left open for normal operation.
Tm1_d1	ICO	D2	Internal Connection. Connected to VSS for normal operation
Tm2_d1	ICO	C1	Internal Connection. Connected to VSS for normal operation

Signal Name	Signal Type	BGA Ball #	Signal Description
Sg1_d1	ICO	E4	Internal Connection. Connected to VSS for normal operation
DT1_d1	NC	F3	No connection. The pin must be left open for normal operation.
MCLK_d1	User Signal	E2	Master Clock (Input). Nominal 10 MHz or 20 MHz Master Clock input. May be connected to an asynchronous (relative to frame signal) clock source.
Fsel_d1	User Signal	D1	Frequency select (Input). This input selects the Master Clock frequency operation. When Fsel pin is low, nominal 19.2 MHz Master Clock input must be applied. When Fsel pin is high, nominal 9.6 MHz Master Clock input must be applied.
Halt_d1	ICO	E1	Internal Connection. Connected to VSS for normal operation
Step_d1	ICO	F2	Internal Connection. Connected to VSS for normal operation
PLLVSS1_d1	Power	G3	PLL Ground. Must be connected to VSS
PLLVDD_d1	Power	F1	PLL Power Supply. Must be connected to VDD2
PLLVSS2_d1	Power	G2	PLL Ground. Must be connected to VSS
AT1_d1	NC	G1	No connection. The pin must be left open for normal operation.
DEVICE 2			
TMS_d2	Signal	V4	Test Mode Select (3.3 V Input). JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up when not driven.
TDI_d2	Signal	Y2	Test Serial Data In (3.3 V Input). JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up when not driven.
TDO_d2	Signal	W3	Test Serial Data Out (Output). JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG scan is not enabled.
TCK_d2	Signal	Y3	Test Clock (3.3 V Input). Provides the clock to the JTAG test logic.
TRSTB_d2	Signal	W4	Test Reset (3.3 V Input). Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low on power-up or held low, to ensure that the MT93L00 is in the normal functional mode. This pin is pulled by an internal pull-down when not driven.

Signal Name	Signal Type	BGA Ball #	Signal Description
Test_En_d2	ICO	V5	Internal Connection. Connected to VSS for normal operation
RESETB_d2	Signal	Y4	Device Reset (Schmitt Trigger Input). An active low resets the device and puts the MT93L00 into a low-power stand-by mode. When the RESET pin is returned to logic high and a clock is applied to the MCLK pin, the device will automatically execute initialization routines, which preset all the Control and Status Registers to their default power-up values.
IRQB_d2	Signal	U5	Interrupt Request (Open Drain Output). This output goes low when an interrupt occurs in any channel. IRQ returns high when all the interrupts have been read from the Interrupt FIFO Register. A pull-up resistor (1 K typical) is required at this output.
DSB_d2	Signal	W5	Data Strobe (Input). This active low input works in conjunction with CS to enable the read and write operations.
CSB_d2	Signal	Y5	Chip Select (Input). This active low input is used by a microprocessor to activate the microprocessor port.
R/WB_d2	Signal	V6	Read/Write (Input). This input controls the direction of the data bus lines (D7-D0) during a microprocessor access.
DTAB_d2	Signal	U6	Data Transfer Acknowledgment (Open Drain Output). This active low output indicates that a data bus transfer is completed. A pull-up resistor (1 K typical) is required at this output.
D(0)_d2	Signal	W6	
D(1)_d2	Signal	Y6	
D(2)_d2	Signal	V7	Data Bus D0 - D7 (Bidirectional). These pins
D(3)_d2	Signal	W7	form the 8-bit bidirectional data bus of the microprocessor port.
D(4)_d2	Signal	Y7	
D(5)_d2	Signal	Y8	
D(6)_d2	Signal	W8	
D(7)_d2	Signal	V8	

Signal Name	Signal Type	BGA Ball #	Signal Description
A(0)_d2	Signal	U9	
A(1)_d2	Signal	V9	
A(2)_d2	Signal	W9	Address A0 to A10 (Input). These inputs provide
A(3)_d2	Signal	Y9	the A10 - A0 address lines to the internal registers.
A(4)_d2	Signal	U10	
A(5)_d2	Signal	T10	
A(6)_d2	Signal	Т9	
A(7)_d2	Signal	V10	
A(8)_d2	Signal	W10	
A(9)_d2	Signal	U8	
A(10)_d2	Signal	Y10	
A_IC1_d2	ICO	Т8	Internal Connection. Connected to VSS for normal operation
A_IC2_d2	ICO	Τ7	Internal Connection. Connected to VSS for normal operation
Tsig(0)_d2	NC	U7	No connection. The pin must be left open for normal operation.
Tsig(1)_d2	NC	Т6	No connection. The pin must be left open for normal operation.
Tsig(2)_d2	NC	U4	No connection. The pin must be left open for normal operation.
Tsig(3)_d2	NC	Τ5	No connection. The pin must be left open for normal operation.
Tsig(4)_d2	NC	R5	No connection. The pin must be left open for normal operation.
Tsig(5)_d2	NC	T4	No connection. The pin must be left open for normal operation.
Tsig(6)_d2	NC	P5	No connection. The pin must be left open for normal operation.
Tsig(7)_d2	NC	P4	No connection. The pin must be left open for normal operation.
ODE_d2	Signal	N5	Output Drive Enable (Input). This input pin is logically AND'd with the ODE bit-6 of the Main Control Register. When both ODE bit and ODE input pin are high, the Rout and Sout ST-BUS outputs are enabled.When the ODE bit is low or the ODE input pin is low, the Rout and Sout ST- BUS outputs are high impedance.

Signal Name	Signal Type	BGA Ball #	Signal Description
Sout_d2	Signal	L1	Send PCM Signal Output (Output). Port 1 TDM data output streams.Sout pin outputs serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Rout_d2	Signal	N4	Receive PCM Signal Output (Output). Port 2 TDM data output streams. Rout pin outputs serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Sin_d2	Signal	L2	Send PCM Signal Input (Input). Port 2 TDM data input streams. Sin pin receives serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Rin_d2	Signal	N3	Receive PCM Signal Input (Input). Port 1 TDM data input streams.Rin pin receives serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
FOIb_d2	Signal	N2	Frame Pulse (Input). This input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS or GCI interface specifications.
C4IB_d2	Signal	L3	Serial Clock (Input). 4.096 MHz serial clock for shifting data in/out on the serial streams (Rin, Sin, Rout, Sout).
SC_set_d2	ICO	N1	Internal Connection. Connected to VSS for normal operation
SM_mclk_d2	ICO	L4	Internal Connection. Connected to VSS for normal operation
ST_mclk_d2	ICO	M5	Internal Connection. Connected to VSS for normal operation
SC_en_d2	ICO	L5	Internal Connection. Connected to VSS for normal operation
SC_In_d2	ICO	M1	Internal Connection. Connected to VSS for normal operation
SC_Reset:_d2	ICO	M2	Internal Connection. Connected to VSS for normal operation
SC_Fclk_d2	ICO	M3	Internal Connection. Connected to VSS for normal operation
Tsig(8)_d2	NC	M4	No connection. The pin must be left open for normal operation.
Tsig(9)_d2	NC	P1	No connection. The pin must be left open for normal operation.
Tsig(10)_d2	NC	P2	No connection. The pin must be left open for normal operation.

Signal Name	Signal Type	BGA Ball #	Signal Description
Tsig(11)_d2	NC	R1	No connection. The pin must be left open for normal operation.
Tsig(12)_d2	NC	R2	No connection. The pin must be left open for normal operation.
Tsig(13)_d2	NC	P3	No connection. The pin must be left open for normal operation.
Tsig(14)_d2	NC	T1	No connection. The pin must be left open for normal operation.
Tsig(15)_d2	NC	U1	No connection. The pin must be left open for normal operation.
Tm1_d2	ICO	T2	Internal Connection. Connected to VSS for normal operation
Tm2_d2	ICO	R3	Internal Connection. Connected to VSS for normal operation
Sg1_d2	ICO	R4	Internal Connection. Connected to VSS for normal operation
DT1_d2	NC	V1	No connection. The pin must be left open for normal operation.
MCLK_d2	Signal	U2	Master Clock (Input). Nominal 10 MHz or 20 MHz Master Clock input. May be connected to an asynchronous (relative to frame signal) clock source.
Fsel_d2	Signal	W1	Frequency select (Input). This input selects the Master Clock frequency operation. When Fsel pin is low, nominal 19.2 MHz Master Clock input must be applied. When Fsel pin is high, nominal 9.6 MHz Master Clock input must be applied.
Halt_d2	ICO	Т3	Internal Connection. Connected to VSS for normal operation
Step_d2	ICO	V2	Internal Connection. Connected to VSS for normal operation
PLLVSS1_d2	Power	Y1	PLL Ground. Must be connected to VSS
PLLVDD_d2	Power	W2	PLL Power Supply. Must be connected to VDD2
PLLVSS2_d2	Power	U3	PLL Ground. Must be connected to VSS
AT1_d2	NC	V3	No connection. The pin must be left open for normal operation.
DEVICE 3			
TMS_d3	Signal	W13	Test Mode Select (3.3 V Input). JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up when not driven.

Signal Name	Signal Type	BGA Ball #	Signal Description
TDI_d3	Signal	V13	Test Serial Data In (3.3 V Input). JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up when not driven.
TDO_d3	Signal	Y14	Test Serial Data Out (Output). JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG scan is not enabled.
TCK_d3	Signal	W14	Test Clock (3.3 V Input). Provides the clock to the JTAG test logic.
TRSTB_d3	Signal	Y15	Test Reset (3.3 V Input). Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low on power-up or held low, to ensure that the MT93L00 is in the normal functional mode. This pin is pulled by an internal pull-down when not driven.
Test_En_d3	ICO	V14	Internal Connection. Connected to VSS for normal operation
RESETB_d3	Signal	W15	Device Reset (Schmitt Trigger Input). An active low resets the device and puts the MT93L00 into a low-power stand-by mode. When the RESET pin is returned to logic high and a clock is applied to the MCLK pin, the device will automatically execute initialization routines, which preset all the Control and Status Registers to their default power-up values.
IRQB_d3	Signal	Y16	Interrupt Request (Open Drain Output). This output goes low when an interrupt occurs in any channel. IRQ returns high when all the interrupts have been read from the Interrupt FIFO Register. A pull-up resistor (1 K typical) is required at this output.
DSB_d3	Signal	Y17	Data Strobe (Input). This active low input works in conjunction with CS to enable the read and write operations.
CSB_d3	Signal	W16	Chip Select (Input). This active low input is used by a microprocessor to activate the microprocessor port.
R/WB_d3	Signal	V15	Read/Write (Input). This input controls the direction of the data bus lines (D7-D0) during a microprocessor access.
B_d3	Signal	Y18	Data Transfer Acknowledgment (Open Drain Output). This active low output indicates that a data bus transfer is completed. A pull-up resistor (1 K typical) is required at this output.

Signal Name	Signal Type	BGA Ball #	Signal Description
D(0)_d3	Signal	W17	
D(1)_d3	Signal	Y19	
D(2)_d3	Signal	V16	Data Bus D0 - D7 (Bidirectional). These pins
D(3)_d3	Signal	W18	form the 8-bit bidirectional data bus of the microprocessor port.
D(4)_d3	Signal	Y20	
D(5)_d3	Signal	W19	
D(6)_d3	Signal	V17	
D(7)_d3	Signal	V18	
A(0)_d3	Signal	U18	
A(1)_d3	Signal	V19	
A(2)_d3	Signal	W20	Address A0 to A10 (Input). These inputs provide
A(3)_d3	Signal	V20	the A10 - A0 address lines to the internal registers.
A(4)_d3	Signal	T18	
A(5)_d3	Signal	U19	
A(6)_d3	Signal	U20	
A(7)_d3	Signal	T19	
A(8)_d3	Signal	R18	
A(9)_d3	Signal	T20	
A(10)_d3	Signal	R17	
A_IC1_d3	ICO	R19	Internal Connection. Connected to VSS for normal operation
A_IC2_d3	ICO	P18	Internal Connection. Connected to VSS for normal operation
Tsig(0)_d3	NC	R20	No connection. The pin must be left open for normal operation.
Tsig(1)_d3	NC	P19	No connection. The pin must be left open for normal operation.
Tsig(2)_d3	NC	P20	No connection. The pin must be left open for normal operation.
Tsig(3)_d3	NC	N19	No connection. The pin must be left open for normal operation.
Tsig(4)_d3	NC	N18	No connection. The pin must be left open for normal operation.
Tsig(5)_d3	NC	M17	No connection. The pin must be left open for normal operation.
Tsig(6)_d3	NC	M18	No connection. The pin must be left open for normal operation.

Signal Name	Signal Type	BGA Ball #	Signal Description
Tsig(7)_d3	NC	M19	No connection. The pin must be left open for normal operation.
ODE_d3	Signal	M20	Output Drive Enable (Input). This input pin is logically AND'd with the ODE bit-6 of the Main Control Register. When both ODE bit and ODE input pin are high, the Rout and Sout ST-BUS outputs are enabled.When the ODE bit is low or the ODE input pin is low, the Rout and Sout ST- BUS outputs are high impedance.
Sout_d3	Signal	L20	Send PCM Signal Output (Output). Port 1 TDM data output streams.Sout pin outputs serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Rout_d3	Signal	N20	Receive PCM Signal Output (Output). Port 2 TDM data output streams. Rout pin outputs serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Sin_d3	Signal	M16	Send PCM Signal Input (Input). Port 2 TDM data input streams. Sin pin receives serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Rin_d3	Signal	L19	Receive PCM Signal Input (Input). Port 1 TDM data input streams.Rin pin receives serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
FOIb_d3	Signal	L18	Frame Pulse (Input). This input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS or GCI interface specifications.
C4IB_d3	Signal	L17	Serial Clock (Input). 4.096 MHz serial clock for shifting data in/out on the serial streams (Rin, Sin, Rout, Sout).
SC_set_d3	ICO	N17	Internal Connection. Connected to VSS for normal operation
SM_mclk_d3	ICO	L16	Internal Connection. Connected to VSS for normal operation
ST_mclk_d3	ICO	N16	Internal Connection. Connected to VSS for normal operation
SC_en_d3	ICO	P17	Internal Connection. Connected to VSS for normal operation
SC_In_d3	ICO	P16	Internal Connection. Connected to VSS for normal operation
SC_Reset:_d3	ICO	R16	Internal Connection. Connected to VSS for normal operation

Signal Name	Signal Type	BGA Ball #	Signal Description
SC_Fclk_d3	ICO	T17	Internal Connection. Connected to VSS for normal operation
Tsig(8)_d3	NC	U17	No connection. The pin must be left open for normal operation.
Tsig(9)_d3	NC	U16	No connection. The pin must be left open for normal operation.
Tsig(10)_d3	NC	T16	No connection. The pin must be left open for normal operation.
Tsig(11)_d3	NC	T15	No connection. The pin must be left open for normal operation.
Tsig(12)_d3	NC	U15	No connection. The pin must be left open for normal operation.
Tsig(13)_d3	NC	T14	No connection. The pin must be left open for normal operation.
Tsig(14)_d3	NC	U14	No connection. The pin must be left open for normal operation.
Tsig(15)_d3	NC	T13	No connection. The pin must be left open for normal operation.
Tm1_d3	ICO	Y11	Internal Connection. Connected to VSS for normal operation
Tm2_d3	ICO	U13	Internal Connection. Connected to VSS for normal operation
Sg1_d3	ICO	W11	Internal Connection. Connected to VSS for normal operation
DT1_d3	NC	V11	No connection. The pin must be left open for normal operation.
MCLK_d3	Signal	U11	Master Clock (Input). Nominal 10 MHz or 20 MHz Master Clock input. May be connected to an asynchronous (relative to frame signal) clock source.
Fsel_d3	Signal	T12	Frequency select (Input). This input selects the Master Clock frequency operation. When Fsel pin is low, nominal 19.2 MHz Master Clock input must be applied. When Fsel pin is high, nominal 9.6 MHz Master Clock input must be applied.
Halt_d3	ICO	Y13	Internal Connection. Connected to VSS for normal operation
Step_d3	ICO	T11	Internal Connection. Connected to VSS for normal operation
PLLVSS1_d3	Power	Y12	PLL Ground. Must be connected to VSS
PLLVDD_d3	Power	W12	PLL Power Supply. Must be connected to VDD2

Signal Name	Signal Type	BGA Ball #	Signal Description
PLLVSS2_d3	Power	V12	PLL Ground. Must be connected to VSS
AT1_d3	NC	U12	No connection. The pin must be left open for normal operation.
DEVICE 4			
TMS_d4	Signal	E16	Test Mode Select (3.3 V Input). JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up when not driven.
TDI_d4	Signal	D17	Test Serial Data In (3.3 V Input). JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up when not driven.
TDO_d4	Signal	C18	Test Serial Data Out (Output). JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG scan is not enabled.
TCK_d4	Signal	F16	Test Clock (3.3 V Input). Provides the clock to the JTAG test logic.
TRSTB_d4	Signal	E17	Test Reset (3.3 V Input). Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low on power-up or held low, to ensure that the MT93L00 is in the normal functional mode. This pin is pulled by an internal pull-down when not driven.
Test_En_d4	ICO	G16	Internal Connection. Connected to VSS for normal operation
RESETB_d4	Signal	F17	Device Reset (Schmitt Trigger Input). An active low resets the device and puts the MT93L00 into a low-power stand-by mode. When the RESET pin is returned to logic high and a clock is applied to the MCLK pin, the device will automatically execute initialization routines, which preset all the Control and Status Registers to their default power-up values.
IRQB_d4	Signal	G17	Interrupt Request (Open Drain Output). This output goes low when an interrupt occurs in any channel. IRQ returns high when all the interrupts have been read from the Interrupt FIFO Register. A pull-up resistor (1 K typical) is required at this output.
DSB_d4	Signal	H16	Data Strobe (Input). This active low input works in conjunction with CS to enable the read and write operations.

Signal Name	Signal Type	BGA Ball #	Signal Description
CSB_d4	Signal	К16	Chip Select (Input). This active low input is used by a microprocessor to activate the microprocessor port.
R/WB_d4	Signal	H17	Read/Write (Input). This input controls the direction of the data bus lines (D7-D0) during a microprocessor access.
DTAB_d4	Signal	K17	Data Transfer Acknowledgment (Open Drain Output). This active low output indicates that a data bus transfer is completed. A pull-up resistor (1 K typical) is required at this output.
D(0)_d4	Signal	K18	
D(1)_d4	Signal	J16	
D(2)_d4	Signal	K19	Data Bus D0 - D7 (Bidirectional). These pins
D(3)_d4	Signal	K20	form the 8-bit bidirectional data bus of the microprocessor port.
D(4)_d4	Signal	J20	
D(5)_d4	Signal	J19	
D(6)_d4	Signal	J18	
D(7)_d4	Signal	J17	
A(0)_d4	Signal	H18	
A(1)_d4	Signal	H19	
A(2)_d4	Signal	H20	Address A0 to A10 (Input). These inputs provide
A(3)_d4	Signal	G20	the A10 - A0 address lines to the internal registers.
A(4)_d4	Signal	G19	
A(5)_d4	Signal	G18	
A(6)_d4	Signal	F20	
A(7)_d4	Signal	F19	
A(8)_d4	Signal	F18	
A(9)_d4	Signal	E20	
A(10)_d4	Signal	E19	
A_IC1_d4	ICO	D20	Internal Connection. Connected to VSS for normal operation
A_IC2_d4	ICO	E18	Internal Connection. Connected to VSS for normal operation
Tsig(0)_d4	NC	D19	No connection. The pin must be left open for normal operation.
Tsig(1)_d4	NC	C20	No connection. The pin must be left open for normal operation.

Signal Name	Signal Type	BGA Ball #	Signal Description
Tsig(2)_d4	NC	B20	No connection. The pin must be left open for normal operation.
Tsig(3)_d4	NC	C19	No connection. The pin must be left open for normal operation.
Tsig(4)_d4	NC	D18	No connection. The pin must be left open for normal operation.
Tsig(5)_d4	NC	C17	No connection. The pin must be left open for normal operation.
Tsig(6)_d4	NC	B19	No connection. The pin must be left open for normal operation.
Tsig(7)_d4	NC	A20	No connection. The pin must be left open for normal operation.
ODE_d4	Signal	B18	Output Drive Enable (Input). This input pin is logically AND'd with the ODE bit-6 of the Main Control Register. When both ODE bit and ODE input pin are high, the Rout and Sout ST-BUS outputs are enabled.When the ODE bit is low or the ODE input pin is low, the Rout and Sout ST- BUS outputs are high impedance.
Sout_d4	Signal	A19	Send PCM Signal Output (Output). Port 1 TDM data output streams.Sout pin outputs serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Rout_d4	Signal	C16	Receive PCM Signal Output (Output). Port 2 TDM data output streams. Rout pin outputs serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Sin_d4	Signal	B17	Send PCM Signal Input (Input). Port 2 TDM data input streams. Sin pin receives serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
Rin_d4	Signal	A18	Receive PCM Signal Input (Input). Port 1 TDM data input streams.Rin pin receives serial TDM data streams at 2.048 Mb/s with 32 channels per stream.
FOlb_d4	Signal	B16	Frame Pulse (Input). This input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS or GCI interface specifications.
C4IB_d4	Signal	C15	Serial Clock (Input). 4.096 MHz serial clock for shifting data in/out on the serial streams (Rin, Sin, Rout, Sout).
SC_set_d4	ICO	A17	Internal Connection. Connected to VSS for normal operation

Signal Name	Signal Type	BGA Ball #	Signal Description
SM_mclk_d4	ICO	A16	Internal Connection. Connected to VSS for normal operation
ST_mclk_d4	ICO	B15	Internal Connection. Connected to VSS for normal operation
SC_en_d4	ICO	C14	Internal Connection. Connected to VSS for normal operation
SC_In_d4	ICO	A15	Internal Connection. Connected to VSS for normal operation
SC_Reset:_d4	ICO	B14	Internal Connection. Connected to VSS for normal operation
SC_Fclk_d4	ICO	A14	Internal Connection. Connected to VSS for normal operation
Tsig(8)_d4	NC	C13	No connection. The pin must be left open for normal operation.
Tsig(9)_d4	NC	D12	No connection. The pin must be left open for normal operation.
Tsig(10)_d4	NC	A12	No connection. The pin must be left open for normal operation.
Tsig(11)_d4	NC	B12	No connection. T he pin must be left open for normal operation.
Tsig(12)_d4	NC	C12	No connection. The pin must be left open for normal operation.
Tsig(13)_d4	NC	E11	No connection. The pin must be left open for normal operation.
Tsig(14)_d4	NC	A13	No connection. The pin must be left open for normal operation.
Tsig(15)_d4	NC	E12	No connection. The pin must be left open for normal operation.
Tm1_d4	ICO	D11	Internal Connection. Connected to VSS for normal operation
Tm2_d4	ICO	B13	Internal Connection. Connected to VSS for normal operation
Sg1_d4	ICO	C11	Internal Connection. Connected to VSS for normal operation
DT1_d4	NC	B11	No connection. The pin must be left open for normal operation.
MCLK_d4	Signal	D13	Master Clock (Input). Nominal 10 MHz or 20 MHz Master Clock input. May be connected to an asynchronous (relative to frame signal) clock source.

Signal Name	Signal Type	BGA Ball #	Signal Description
Fsel_d4	Signal	A11	Frequency select (Input). This input selects the Master Clock frequency operation. When Fsel pin is low, nominal 19.2 MHz Master Clock input must be applied. When Fsel pin is high, nominal 9.6 MHz Master Clock input must be applied.
Halt_d4	ICO	E13	Internal Connection. Connected to VSS for normal operation
Step_d4	ICO	D14	Internal Connection. Connected to VSS for normal operation
PLLVSS1_d4	Power	E14	PLL Ground. Must be connected to VSS
PLLVDD_d4	Power	D15	PLL Power Supply. Must be connected to VDD2
PLLVSS2_d4	Power	D16	PLL Ground. Must be connected to VSS
AT1_d4	NC	E15	No connection. The pin must be left open for normal operation.

Description of the Single MT93L00

Device Overview

The MT93L00 architecture contains 32 echo cancellers divided into 16 groups. Each group has two echo cancellers, Echo Canceller A and Echo Canceller B. Each group can be configured in Normal, Extended Delay or Back-to-Back configurations. In Normal configuration, a group of echo cancellers provides two channels of 64 ms echo cancellation, which run independently on different channels. In Extended Delay configuration, a group of echo cancellers achieves 128 ms of echo cancellation by cascading the two echo cancellers (A & B). In Back-to-Back configuration, the two echo cancellers from the same group are positioned to cancel echo coming from both directions in a single channel, providing full-duplex 64 ms echo cancellation.

Each echo canceller contains the following main elements (see Figure 4).

- · Adaptive Filter for estimating the echo channel
- Subtractor for cancelling the echo
- Double-Talk detector for disabling the filter adaptation during periods of double-talk
- Path Change detector for fast reconvergence on major echo path changes
- · Instability Detector to combat oscillation in very low ERL environments
- · Non-Linear Processor for suppression of residual echo
- Disable Tone Detectors for detecting valid disable tones at send and receive path inputs
- Narrow-Band Detector for preventing Adaptive Filter divergence from narrow-band signals
- Offset Null filters for removing the DC component in PCM channels
- 12 dB attenuator for signal attenuation
- Parallel controller interface compatible with Motorola microcontrollers
- PCM encoder/decoder compatible with μ/A-Law ITU-T G.711 or Sign-Magnitude coding

Each echo canceller in the MT93L00 has four functional states: Mute, Bypass, Disable Adaptation and Enable Adaptation. These are explained in the section entitled Echo Canceller Functional States.

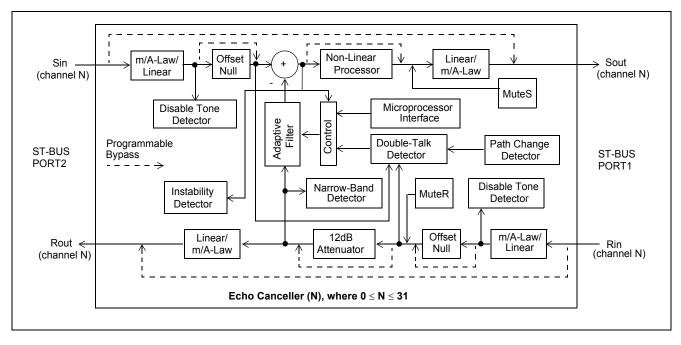


Figure 4 - Echo Canceller Functional Block Diagram

Adaptive Filter

The adaptive filter adapts to the echo path and generates an estimate of the echo signal. This echo estimate is then subtracted from Sin. For each group of echo cancellers, the adaptive filter is a 1024 tap FIR adaptive filter which is divided into two sections. Each section contains 512 taps providing 64 ms of echo estimation. In Normal configuration, the first section is dedicated to channel A and the second section to channel B. In Extended Delay configuration, both sections are cascaded to provide 128ms of echo estimation in channel A. In Back-to Back configuration, the first section is used in the receive direction and the second section is used in the transmit direction for the same channel.

Double-Talk Detector

Double-Talk is defined as those periods of time when signal energy is present in both directions simultaneously. When this happens, it is necessary to disable the filter adaptation to prevent divergence of the Adaptive Filter coefficients. Note that when double-talk is detected, the adaptation process is halted but the echo canceller continues to cancel echo using the previous converged echo profile.

A double-talk condition exists whenever the relative signal levels of Rin (Lrin) and Sin (Lsin) meet the following condition:

where DTDT is the Double-Talk Detection Threshold. Lsin and Lrin are signal levels expressed in dBm0.

A different method is used when it is uncertain whether Sin consists of a low level double-talk signal or an echo return. During these periods, the adaptation process is slowed down but it is not halted.

In G.168 standard, the echo return loss is expected to be at least 6 dB. This implies that the Double-Talk Detector Threshold (DTDT) should be set to 0.5 (-6 dB). However, in order to get additional guardband, the DTDT is set internally to 0.5625 (-5 dB).

In some applications the return loss can be higher or lower than 6 dB. The MT93L00 allows the user to change the detection threshold to suit each application's need. This threshold can be set by writing the desired threshold value into the DTDT register.

The DTDT register is 16 bits wide. The register value in hexadecimal can be calculated with the following equation:

DTDT(hex) = hex(DTDT(dec) * 32768)

where 0 < DTDT(dec) < 1

Example: For DTDT = 0.5625 (-5dB), the hexadecimal value becomes hex(0.5625 * 32768) = 4800h

Path Change Detector

Integrated into the MT93L00A is a Path Change Detector. This permits fast reconvergence when a major change occurs in the echo channel. Subtle changes in the echo channel are also tracked automatically once convergence is achieved, but at a much slower speed.

The Path Change Detector is activated by setting the PathDet bit in Control Register A3/B3 to "1". An optional path clearing feature can be enabled by setting the PathClr bit in Control Register A3/B3 to "1". With path clearing turned on, the existing echo channel estimate will also be cleared (i.e. the adaptive filter will be filled with zeroes) upon detection of a major path change.

Non-Linear Processor (NLP)

After echo cancellation, there is always a small amount of residual echo which may still be audible. The MT93L00 uses an NLP to remove residual echo signals which have a level lower than the Adaptive Suppression Threshold (TSUP in G.168). This threshold depends upon the level of the Rin (Lrin) reference signal as well as the programmed value of the Non-Linear Processor Threshold register (NLPTHR). TSUP can be calculated by the following equation:

TSUP = Lrin + 20log10(NLPTHR)

where NLPTHR is the Non-Linear Processor Threshold register value and Lrin is the relative power level expressed in dBm0.

When the level of residual error signal falls below TSUP, the NLP is activated further attenuating the residual signal by an additional 36 dB. To prevent a perceived decrease in background noise due to the activation of the NLP, a spectrally-shaped comfort noise, equivalent in power level to the background noise, is injected. This keeps the perceived noise level constant. Consequently, the user does not hear the activation and de-activation of the NLP.

The NLP processor can be disabled by setting the NLPDis bit to "1" in Control Register 2.

The NLPTHR register is 16 bits wide. The register value in hexadecimal can be calculated with the following equation:

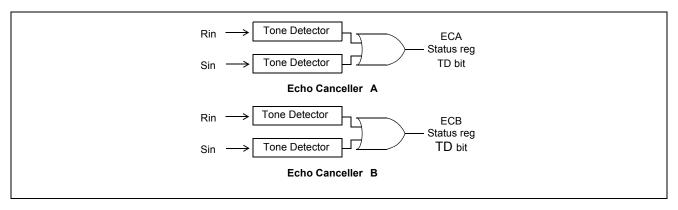
NLPTHR(hex) = hex(NLPTHR(dec) * 32768)

where 0 < NLPTHR(dec) < 1

The comfort noise injector can be disabled by setting the INJDis bit to "1" in Control Register A1/B1. It should be noted that the NLPTHR is valid and the comfort noise injection is active only when the NLP is enabled.

If the comfort noise injector is unable to correctly match the level of the background noise (because of peculiar spectral characteristics, for example), the injected level can be fine-tuned using the Noise Scaling register. A neutral value of 80(hex) will prevent any scaling. Values less than 80(hex) will reduce the noise level, values greater than 80(hex) will increase the noise level. The scaling is done linearly.

Example: To decrease the comfort noise level by 3 dB, the register value would be $10^{(-3/20)} \cdot 128 = 0.71 \cdot 128 = 91(dec) = 5B(hex)$


The default factory setting for the Noise Scaling register should be adequate for most operating environments. It is unlikely that it will need to be changed. It has also been set to a value which will ensure G.168 compliance.

Disable Tone Detector

G.165 recommendation defines the disable tone as having the following characteristics: 2100 Hz (\pm 21 Hz) sine wave, a power level between -6 to -31 dBm0, and a phase reversal of 180 degrees (\pm 25 degrees) every 450 ms (\pm 25 ms). If the disable tone is present for a minimum of one second with at least one phase reversal, the Tone Detector will trigger.

G.164 recommendation defines the disable tone as a 2100 Hz (\pm 21 Hz) sine wave with a power level between 0 to -31 dBm0. If the disable tone is present for a minimum of 400 milliseconds, with or without phase reversal, the Tone Detector will trigger.

The MT93L00 has two Tone Detectors per channels (for a total of 64) in order to monitor the occurrence of a valid disable tone on both Rin and Sin. Upon detection of a disable tone, TD bit of the Status Register will indicate logic high and an interrupt is generated (i.e., IRQ pin low). Refer to Figure 5 and to the Interrupts section.

Figure 5 - Disable Tone Detection

Once a Tone Detector has been triggered, there is no longer a need for a valid disable tone (G.164 or G.165) to maintain Tone Detector status (i.e., TD bit high). The Tone Detector status will only release (i.e., TD bit low) if the signals Rin and Sin fall below -30 dBm0, in the frequency range of 390 Hz to 700 Hz, and below -34 dBm0, in the