

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

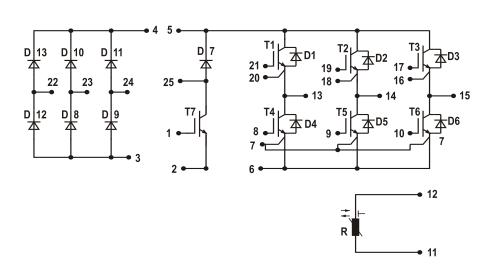
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

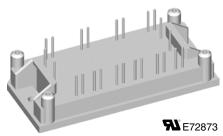
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Converter - Brake - Inverter Module (CBI 1) NPT IGBT


Three Phase Rectifier	Brake Chopper	Three Phase Inverter
V _{RRM} = 1600 V	V _{CES} = 600 V	V _{CES} = 600 V
I _{DAVM25} = 130 A	I _{C25} = 25 A	$I_{C25} = 42 A$
$I_{FSM} = 320 \text{ A}$	$V_{CE(sat)} = 2.0 V$	$V_{CE(sat)} = 2.3 V$

Preliminary data

Part name (Marking on product)

MUBW35-06A6K

Pin configuration see outlines.

Features:

- High level of integration only one power semiconductor module required for the whole drive
- Inverter with NPT IGBTs
- low saturation voltage
- positive temperature coefficient
- fast switching
- short tail current
- Epitaxial free wheeling diodes with hiperfast and soft reverse recovery
- Industry standard package with insulated copper base plate and soldering pins for PCB mounting
- Temperature sense included

Application:

AC motor drives with

- Input from single or three phase grid
- Three phase synchronous or asynchronous motor
- Electric braking operation

Package:

- UL registered
- Industry standard E1-pack

Ouput Inverter T1 - T6

				Ratir	ngs	
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
V _{CES}	collector emitter voltage	$T_{VJ} = 25^{\circ}C$ to 150	0°C		600	٧
V _{GES}	max. DC gate voltage max. transient collector gate voltage	continuous transient			±20 ±30	V
I _{C25}	collector current	$T_{c} = 29$ $T_{c} = 80$			42 29	A A
P _{tot}	total power dissipation	$T_C = 25$	5°C		130	W
V _{CE(sat)}	collector emitter saturation voltage	$I_C = 35 \text{ A}; V_{GE} = 15 \text{ V}$ $T_{VJ} = 28$ $T_{VJ} = 128$		2.3 2.6	2.7	>
$V_{GE(th)}$	gate emitter threshold voltage	$I_{C} = 0.7 \text{ mA}; V_{GE} = V_{CE}$ $T_{VJ} = 25$	5°C 4.5		6.5	V
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}$; $V_{GE} = 0 \text{ V}$ $T_{VJ} = 29$ $T_{VJ} = 129$		1.5	0.75	mA mA
I _{GES}	gate emitter leakage current	$V_{CE} = 0 \text{ V}; \ V_{GE} = \pm 20 \text{ V}$			200	nA
C _{ies}	input capacitance	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$		1600		pF
Q _{G(on)}	total gate charge	$V_{CE} = 300 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 30 \text{ A}$		95		nC
$egin{array}{l} oldsymbol{t_{d(on)}} \ oldsymbol{t_r} \ oldsymbol{t_{d(off)}} \ oldsymbol{t_f} \ oldsymbol{E_{on}} \ oldsymbol{E_{off}} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	inductive load $ V_{CE} = 300 \text{ V; } I_{C} = 30 \text{ A} $ $ V_{GE} = \pm 15 \text{ V; } R_{G} = 33 \Omega $	5°C	50 50 270 40 1.4 1.0		ns ns ns ns mJ mJ
I _{CM}	reverse bias safe operating area	$\begin{aligned} & \text{RBSOA; V}_{\text{GE}} = \pm 15 \text{ V; R}_{\text{G}} = 33 \ \Omega \\ & \text{L} = 100 \ \mu\text{H; clamped induct. load} \text{T}_{\text{VJ}} = 125 \\ & \text{V}_{\text{CEmax}} = \text{V}_{\text{CES}} \cdot \text{L}_{\text{S}} \cdot \text{di/dt} \end{aligned}$	5°C	60		А
t _{sc} (SCSOA)	short circuit safe operating area	$V_{CE} = 600 \text{ V}; V_{GE} = \pm 15 \text{ V};$ $T_{VJ} = 120 \text{ R}_{G} = 82 \Omega;$ non-repetitive	5°C	10	_	μs
R _{thJC}	thermal resistance junction to case	(per IGBT)			0.95	K/W
R _{thCH}	thermal resistance case to heatsink	(per IGBT)		0.35		K/W

Output Inverter D1 - D6

					Ratir	ngs	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitve reverse voltage		T _{VJ} = 150°C			600	V
_{F25} _{F80}	forward current		$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 80^{\circ}{\rm C}$			69 46	A A
V _F	forward voltage	$I_F = 35 \text{ A}; V_{GE} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		1.2	1.7	V
I _{RM} t _{rr} E _{rec(off)}	max. reverse recovery current reverse recovery time reverse recovery energy	$ \begin{cases} V_{R} = 100 \text{ V} \\ di_{F}/dt = -100 \text{ A/}\mu\text{s} \\ I_{F} = 50 \text{ A; } V_{GE} = 0 \text{ V} \end{cases} $	T _{VJ} = 100°C		5 100 tbd		Α ns μJ
R _{thJC}	thermal resistance junction to case	(per diode)				0.9	K/W
R _{thCH}	thermal resistance case to heatsink	(per diode)			0.3		K/W

 $T_{\rm C}$ = 25°C unless otherwise stated

				Ratings				
Symbol	Definitions	Conditions		min.	typ.	max.	Unit	
V _{CES}	collector emitter voltage	T _{vJ}	= 25°C to 150°C			600	V	
V _{GES}	max. DC gate voltage max. transient collector gate voltage	continuous transient				±20 ±30	V	
I _{C25}	collector current		$T_{\rm C} = 25^{\circ} \text{C}$ $T_{\rm C} = 80^{\circ} \text{C}$			25 17	A A	
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			80	W	
V _{CE(sat)}	collector emitter saturation voltage	I _C = 15 A; V _{GE} = 15 V	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		2.0 2.3	2.4	V	
V _{GE(th)}	gate emitter threshold voltage	$I_C = 0.4 \text{ mA}; V_{GE} = V_{CE}$	$T_{VJ} = 25^{\circ}C$	4.5		6.5	V	
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		0.8	0.5	mA mA	
I _{GES}	gate emitter leakage current	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$				100	nA	
C _{ies}	input capacitance	V _{CE} = 25 V; V _{GE} = 0 V; f = 1 MH	Z		800		pF	
Q _{G(on)}	total gate charge	$V_{CE} = 300 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 15 \text{ V}$	5 A		57		nC	
$\begin{aligned} & t_{d(on)} \\ & t_r \\ & t_{d(off)} \\ & t_f \\ & E_{on} \\ & E_{off} \end{aligned}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	inductive load $V_{CE} = 300 \text{ V; } I_C = 15 \text{ A}$ $V_{GE} = \pm 15 \text{ V; } R_G = 68 \Omega$	T _{VJ} = 125°C		30 50 270 40 0.7 0.5		ns ns ns ns mJ mJ	
I _{CM}	reverse bias safe operating area	RBSOA; $V_{GE} = \pm 15 \text{ V}$; $R_G = 68$ L = 100 μ H; clamped induct. lo $V_{CEmax} = V_{CES}$ - L_S -di/dt			30		A	
t _{sc} (SCSOA)	short circuit safe operating area	$V_{CE} = 600 \text{ V}; V_{GE} = \pm 15 \text{ V};$ $R_G = 82 \Omega;$ non-repetitive	T _{vJ} = 125°C		10		μs	
R _{thJC}	thermal resistance junction to case	(per IGBT)				1.55	K/W	
R _{thCH}	thermal resistance case to heatsink	(per IGBT)			0.5		K/W	

Duales	Chopper	\mathbf{D}
Brake	Chopper	1)/

Diane Oi	ioppei bi						
					Ratir	ngs	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 150^{\circ}C$			600	V
I _{F25}	forward current		$T_{C} = 25^{\circ}C$ $T_{C} = 80^{\circ}C$			21 14	A A
V _F	forward voltage	$I_F = 15 \text{ A}; V_{GE} = 0 \text{ V}$	T _{vJ} = 25°C T _{vJ} = 125°C		1.5	2.3	V V
I _R	reverse current	$V_R = V_{RRM}$	T _{vJ} = 25°C T _{vJ} = 125°C		0.2	0.06	mA mA
I _{RM}	max. reverse recovery current reverse recovery time	$ \begin{cases} V_{R} = 100 \text{ V}; I_{F} = 12 \text{ A} \\ di_{F}/dt = -100 \text{ A}/\mu\text{s} \end{cases} $	T _{vJ} = 100°C		3.5 80		A ns
R _{thJC}	thermal resistance junction to case	(per diode)				2.5	K/W
R _{thCH}	thermal resistance case to heatsink	(per diode)			0.85		K/W

 $T_{\text{C}} = 25^{\circ}\text{C}$ unless otherwise stated

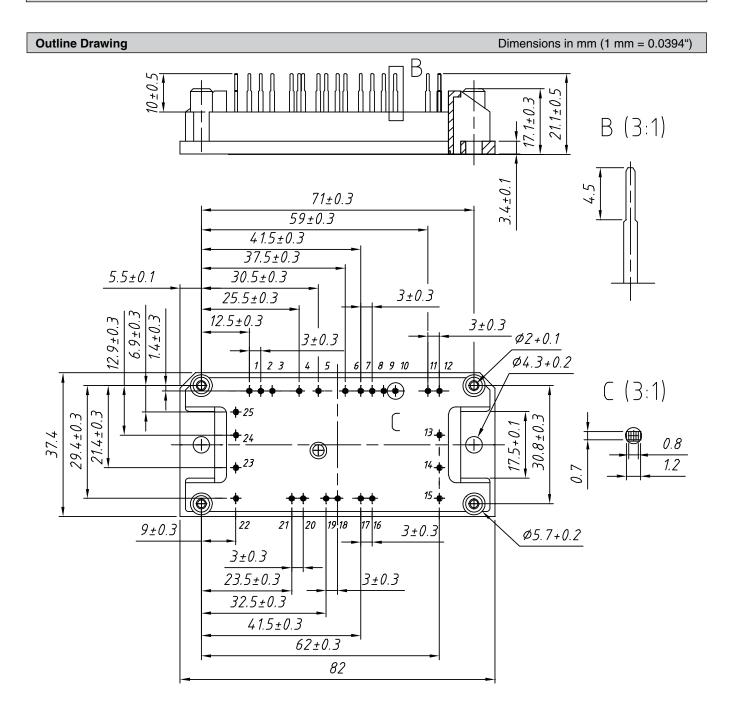
Input Rec	Input Rectifier Bridge D8 - D13									
Symbol	Definitions	Conditions	Maximum Ra	tings						
V_{RRM}	max. repetitive reverse voltage			1600	V					
I _{FAV} I _{DAVM} I _{FSM}	average forward current max. average DC output current max. surge forward current	sine 180° rectangular; d = $\frac{1}{3}$; bridge t = 10 ms; sine 50 Hz	$T_{C} = 80^{\circ}C$ $T_{C} = 80^{\circ}C$ $T_{C} = 25^{\circ}C$	31 89 320	A A A					
P_{tot}	total power dissipation		$T_C = 25^{\circ}C$	80	W					

Symbol	Conditions					ristic Va	alues
				min.	typ.	max.	
V _F	forward voltage	I _F = 30 A	$T_{VJ} = 25^{\circ}C$		1.0	1.35	V
			$T_{VJ} = 125^{\circ}C$		1.1		V
I _R	reverse current	$V_R = V_{RRM}$	$T_{VJ} = 25^{\circ}C$			0.02	mA
			$T_{VJ} = 125^{\circ}C$		0.4		mA
R_{thJC}	thermal resistance junction to case	(per diode)	$T_{VJ} = 25^{\circ}C$			1.4	K/W
R_{thCH}	thermal resistance case to heatsink	(per diode)			0.45		K/W

rempera	ture Sensor NTC						
					Ratir	ngs	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
R_{25}	resistance		$T_C = 25^{\circ}C$	4.45	4.7	5.0	kΩ
B _{25/85}					3510		K

	·	·	Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
T _{VJ} T _{VJM}	operating temperature max. virtual junction temperature		-40		125 150	ာ <u>ှိ</u> ကို
T _{stg}	storage temperature		-40		125	Ŝ
\mathbf{V}_{ISOL}	isolation voltage	$I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}$			2500	V~
M _d	mounting torque	(M4)	2.0		2.2	Nm
d _s	creep distance on surface		12.7			mm
d _A	strike distance through air		12.7			mm
Weight				40		g

Equivalent Circuits for Simulation



Module

v ₀				Ratir	ngs	
Symbol	Definitions	Conditions	n	nin. typ.	max.	Unit
V _o	rectifier diode	D8 - D13	T _{vJ} = 125°C	0.90		V
R_0			·	9		mΩ
V _o	IGBT	T1 - T6	T _{vJ} = 125°C	1.0		V
R_0			·	4		mΩ
V _o	free wheeling diode	D1 - D6	T _{vJ} = 125°C	1.05		V
R_0				7		$m\Omega$
V ₀	IGBT	T7	T _{vJ} = 125°C	1.0		V
R_0				70		$m\Omega$
V_0	free wheeling diode	D7	T _{vJ} = 125°C	1.25		V
R_0				26		mΩ
		·				

 $T_{\text{C}} = 25^{\circ}\text{C}$ unless otherwise stated

Product Marking

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MUBW 35-06A6K	MUBW35-06A6K	Box	10	500 117