

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

. . eescale Semiconductor

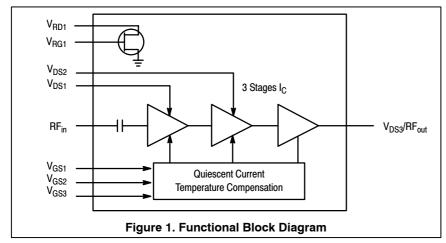
Technical Data

RF LDMOS Wideband Integrated Power Amplifiers

The MW4IC2020N wideband integrated circuit is designed with on-chip matching that makes it usable from 1600 to 2400 MHz. This multi-stage structure is rated for 26 to 28 Volt operation and covers all typical cellular base station modulation formats.

Final Application

Typical Two-Tone Performance: V_{DD} = 26 Volts, I_{DQ1} = 80 mA, I_{DQ2} = 200 mA, I_{DQ3} = 300 mA, P_{out} = 20 Watts PEP, Full Frequency Band Power Gain — 29 dB
 IMD — -32 dBc
 Drain Efficiency — 26% (at 1805 MHz) and 20% (at 1990 MHz)

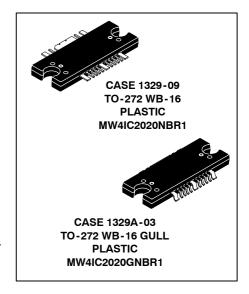

Driver Applications

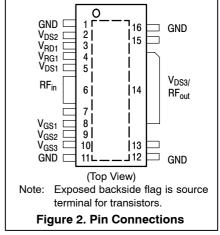
Typical GSM EDGE Performance: V_{DD} = 26 Volts, I_{DQ1} = 80 mA, I_{DQ2} = 230 mA, I_{DQ3} = 230 mA, P_{out} = 5 Watts Avg., Full Frequency Band Power Gain — 29 dB
 Spectral Regrowth @ 400 kHz Offset = -66 dBc
 Spectral Regrowth @ 600 kHz Offset = -77 dBc
 EVM — 1% rms

Typical CDMA Performance: V_{DD} = 26 Volts, I_{DQ1} = 80 mA, I_{DQ2} = 240 mA, I_{DQ3} = 250 mA, P_{out} = 1 Watt Avg., Full Frequency Band, IS-95 CDMA (Pilot, Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF.

Power Gain — 30 dB ACPR @ 885 kHz Offset = -61 dBc in 30 kHz Bandwidth ALT1 @ 1.25 MHz Offset = -69 dBc in 12.5 kHz Bandwidth ALT2 @ 2.25 MHz Offset = -59 dBc in 1 MHz Bandwidth

- Capable of Handling 3:1 VSWR, @ 26 Vdc, 1990 MHz, 8 Watts CW Output Power
- Stable into a 3:1 VSWR. All Spurs Below -60 dBc @ 100 mW to 8 W CW Pout.
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output)
- Integrated Temperature Compensation with Enable/Disable Function
- On-Chip Current Mirror g_m Reference FET for Self Biasing Application (1)
- Integrated ESD Protection
- 200°C Capable Plastic Package
- N Suffix Indicates Lead-Free Terminations. RoHS Compliant.
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel




Document Number: MW4IC2020N Rev. 9, 5/2006

√RoHS

MW4IC2020NBR1 MW4IC2020GNBR1

1805-1990 MHz, 20 W, 26 V GSM/GSM EDGE, CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS

 Refer to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V_{GS}	-0.5, +15	Vdc
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	T _J	200	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ⁽¹⁾	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$		°C/W
Stage 1		10.5	
Stage 2		5.1	
Stage 3		2.3	

Table 3. ESD Protection Characteristics

Test Conditions	Class
Human Body Model	2 (Minimum)
Machine Model	M3 (Minimum)
Charge Device Model	C5 (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_C = 25°C unless otherwise noted)

Symbol	Min	Тур	Max	Unit		
Functional Tests (In Freescale Wideband 1805-1990 MHz Test Fixture, 50 ohm system) V _{DD} = 26 Vdc, I _{DQ1} = 80 mA, I _{DQ2} = 200 mA, I _{DQ3} = 300 mA, P _{Out} = 20 W PEP, f1 = 1990 MHz, f2 = 1990.1 MHz and f1 = 1805 MHz, f2 = 1805.1 MHz, Two-Tone CW						
G _{ps}	27	29	_	dB		
	ohm system) 1805 MHz, f2	ohm system) V _{DD} = 26 Vda 1805 MHz, f2 = 1805.1 MH	ohm system) V _{DD} = 26 Vdc, I _{DQ1} = 80 n 1805 MHz, f2 = 1805.1 MHz, Two-Tone	ohm system) V_{DD} = 26 Vdc, I_{DQ1} = 80 mA, I_{DQ2} = 20 1805 MHz, f2 = 1805.1 MHz, Two-Tone CW		

Power Gain	G _{ps}	27	29	_	dB
Drain Efficiency f1 = 1805 MHz, f2 = 1805.1 MHz f1 = 1990 MHz, f2 = 1990.1 MHz	η _D	24 18	26 20	_	%
Input Return Loss	IRL	_	_	-10	dB
Intermodulation Distortion	IMD	_	-32	-27	dBc

Typical Performances (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 26$ Vdc, $I_{DQ1} = 80$ mA, $I_{DQ2} = 200$ mA, $I_{DQ3} = 300$ mA, 1805 MHz<Frequency<1990 MHz, 1-Tone

Saturated Pulsed Output Power (f = 1 kHz, Duty Cycle 10%)	P _{sat}	_	33	_	W
Quiescent Current Accuracy over Temperature (-10 to 85°C) (2)		_	±5	_	%
Gain Flatness in 30 MHz Bandwidth @ Pout = 1 W CW	G _F	_	0.15	_	dB
Deviation from Linear Phase in 30 MHz Bandwidth @ P _{out} = 1 W CW 1805-1880 MHz 1930-1990 MHz		_	±0.5 ±0.2	_	0
Delay @ P _{out} = 1 W CW Including Output Matching	Delay	_	1.8	_	ns
Part-to-Part Phase Variation @ P _{out} = 1 W CW	ΦΔ	_	±10	_	٥

^{1.} Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955.

(continued)

^{2.} Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977.

Table 5. Electrical Characteristics (T_C = 25°C unless otherwise noted) (continued)

Characteristic Symbol Min Typ Max Unit
--

Typical CDMA Performances (In Modified CDMA Test Fixture, 50 ohm system) $V_{DD} = 26 \text{ Vdc}$, $D_{Q1} = 80 \text{ mA}$, $I_{DQ2} = 240 \text{ mA}$, $I_{DQ3} = 250 \text{ mA}$, $P_{out} = 1 \text{ W Avg.}$, P_{O

Power Gain	G _{ps}	_	30	_	dB
Drain Efficiency	η_{D}	_	5	_	%
Adjacent Channel Power Ratio (±885 kHz in 30 kHz Bandwidth)	ACPR	_	-61	_	dBc
Alternate 1 Channel Power Ratio (±1.25 MHz in 12.5 kHz Bandwidth)		_	-69	=	dBc
Alternate 2 Channel Power Ratio (±2.25 MHz in 1 MHz Bandwidth)	ALT2	_	-59	_	dBc

Typical GSM EDGE Performances (In Modified GSM EDGE Test Fixture, 50 ohm system) V_{DD} = 26 Vdc, I_{DQ1} = 80 mA, I_{DQ2} = 230 mA, I_{DQ3} = 230 mA, P_{out} = 5 W Avg., 1805 MHz<Frequency<1990 MHz

Power Gain	G _{ps}	_	29	_	dB
Drain Efficiency	η_{D}	_	15	_	%
Error Vector Magnitude	EVM	_	1	_	% rms
Spectral Regrowth at 400 kHz Offset	SR1	_	-66	_	dBc
Spectral Regrowth at 600 kHz Offset	SR2	_	-77	_	dBc

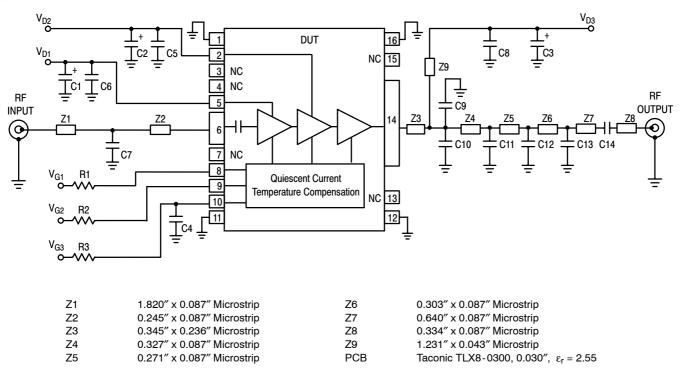
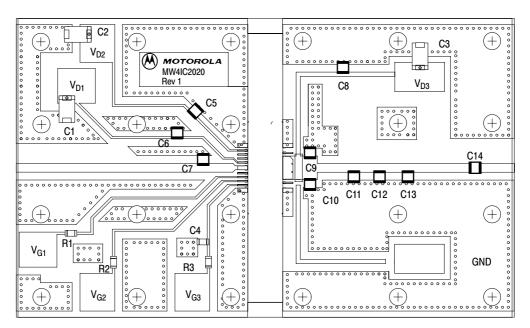



Figure 3. MW4IC2020NBR1(GNBR1) Test Circuit Schematic

Table 6. MW4IC2020NBR1(GNBR1) Test Circuit Component Designations and Values

Part	Part Description		Manufacturer
C1, C2, C3	10 μF, 35 V Tantalum Capacitors	TAJE226M035	AVX
C4	220 nF Chip Capacitor (1206)	12065C224K28	AVX
C5, C6, C8	6.8 pF 100B Chip Capacitors	100B6R8CW	ATC
C7	0.5 pF 100B Chip Capacitor	100B0R5BW	ATC
C9, C11	1.8 pF 100B Chip Capacitors	100B1R8BW	ATC
C10	2.2 pF 100B Chip Capacitor	100B2R2BW	ATC
C12	1 pF 100B Chip Capacitor	100B1R0BW	ATC
C13	0.3 pF 100B Chip Capacitor	100B0R3BW	ATC
C14	10 pF 100B Chip Capacitor	100B100GW	ATC
R1, R2, R3	1.8 kΩ Chip Resistors (1206)		

Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 4. MW4IC2020NBR1(GNBR1) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

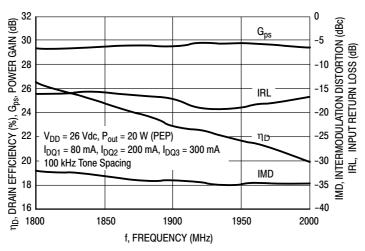


Figure 5. Two-Tone Wideband Performance

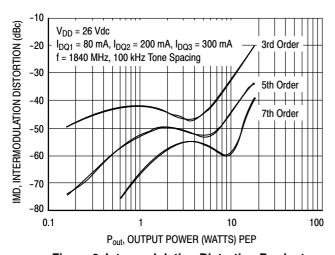


Figure 6. Intermodulation Distortion Products versus Output Power @ 1840 MHz

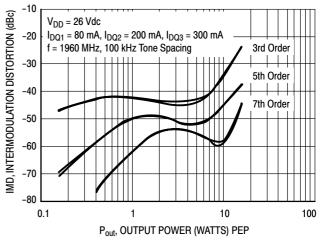


Figure 7. Intermodulation Distortion Products versus Output Power @ 1960 MHz

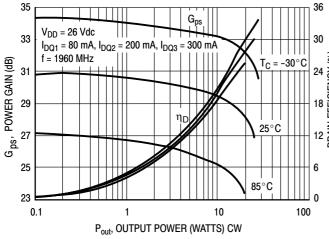


Figure 8. Power Gain and Drain Efficiency versus Output Power

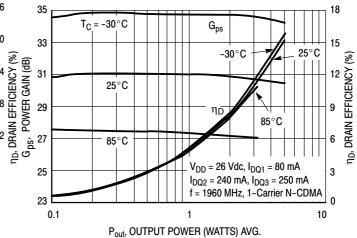


Figure 9. Power Gain and Drain Efficiency versus Output Power

TYPICAL CHARACTERISTICS

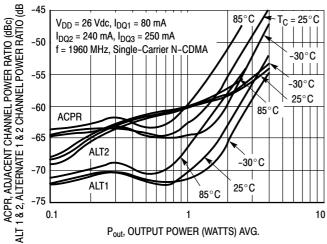


Figure 10. Alternate Channel Power Ratio, Alternate 1 and 2 Channel Power Ratio versus Output Power

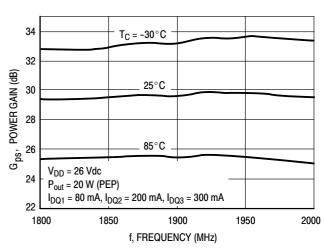


Figure 11. Power Gain versus Frequency

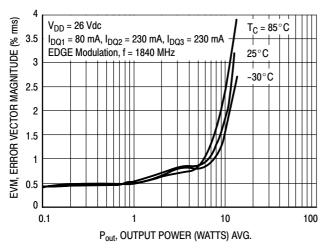


Figure 12. EVM versus Output Power @ 1840 MHz

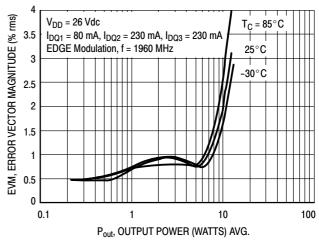


Figure 13. EVM versus Output Power @ 1960 MHz

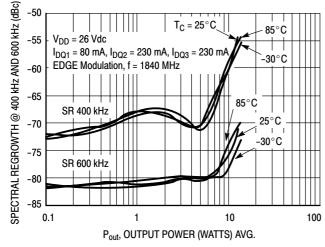


Figure 14. Spectral Regrowth at 400 and 600 kHz versus Output Power @ 1840 MHz

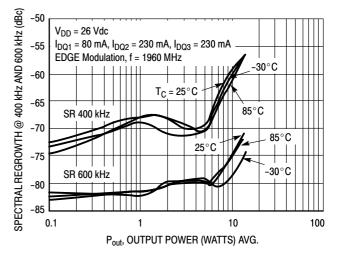
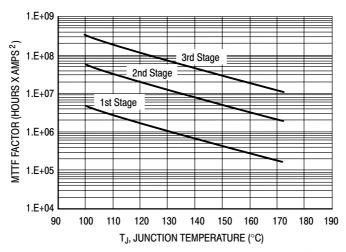
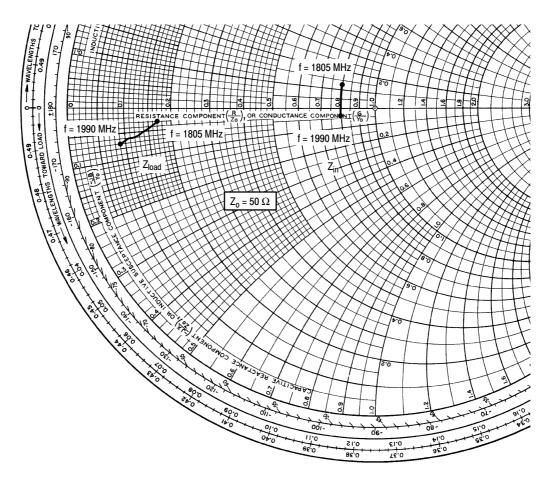



Figure 15. Spectral Regrowth at 400 and 600 kHz versus Output Power @ 1960 MHz

MW4IC2020NBR1 MW4IC2020GNBR1


TYPICAL CHARACTERISTICS

This above graph displays calculated MTTF in hours x ampere² drain current. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ of the theoretical prediction for metal failure. Divide MTTF factor by $l_D{}^2$ for MTTF in a particular application.

Figure 16. MTTF Factor versus Junction Temperature

 V_{DD} = 26 V, I_{DQ1} = 80 mA, I_{DQ2} = 200 mA, I_{DQ3} = 300 mA, P_{out} = 20 W PEP

f MHz	$egin{array}{c} \mathbf{Z_{in}} \\ \Omega \end{array}$	$\mathbf{Z_{load}}_{\Omega}$
1805	40.00 + j6.50	8.75 - j1.42
1842	40.00 + j2.00	7.00 - j2.70
1880	40.00 - j1.50	5.90 - j2.97
1930	40.00 - j1.80	5.46 - j3.20
1960	40.00 - j2.10	4.30 - j3.35
1990	40.00 - j2.60	4.45 - j3.30

 $Z_{in} \quad = \quad \text{Device input impedance as measured from} \\ \quad \text{gate to ground.}$

 $Z_{load} \quad = \quad \text{Test circuit impedance as measured} \\ \quad \text{from drain to ground.}$

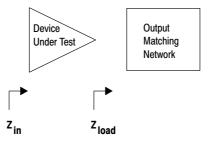
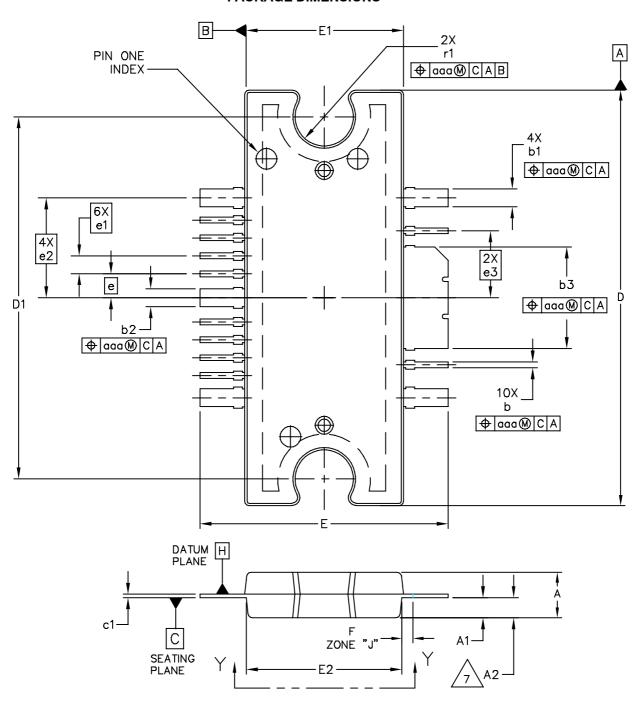
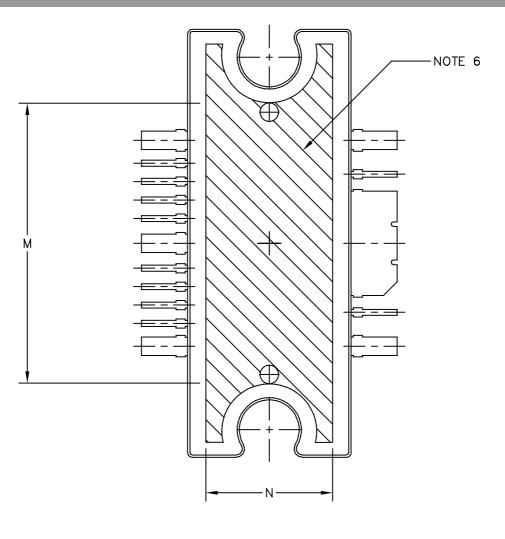



Figure 17. Series Equivalent Input and Load Impedance



PACKAGE DIMENSIONS

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	OUTLINE PRINT VERSION NOT TO SCALE			
TITLE:	DOCUMENT NO	REV: L			
TO-272 WIDE BO MULTI-LEAD	CASE NUMBER: 1329-09 13 MAR 2006				
WOET LEAD		STANDARD: NON-JEDEC			

VIEW Y-Y

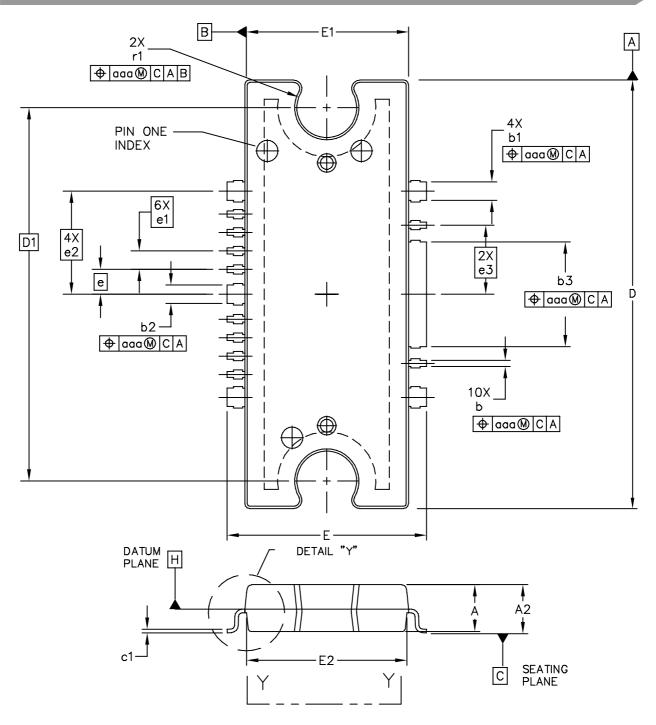
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO	REV: L		
TO-272 WIDE BOI	CASE NUMBER: 1329-09 13 MAR 2006			
MOLTI-LLAD	STANDARD: NO	N-JEDEC		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

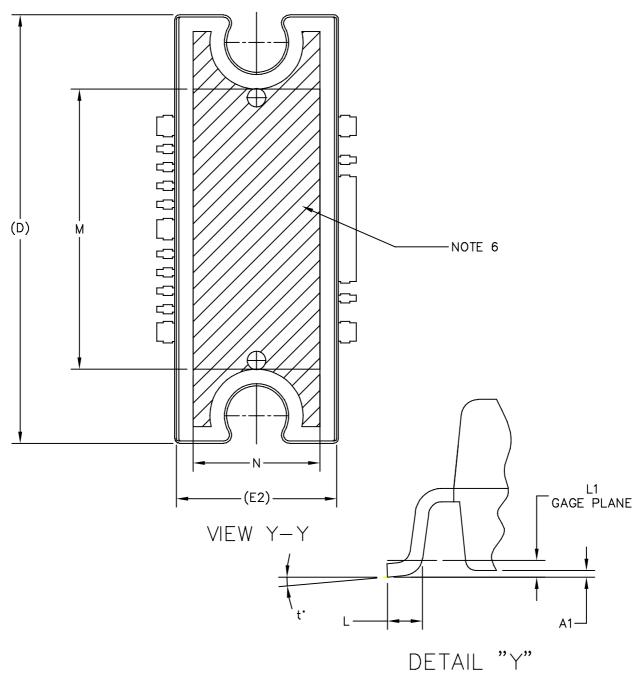
	IN	СН	MILLI	METER		INCH		MILLI	METER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.100	.104	2.54	2.64	b	.011	.017	0.28	0.43
A1	.038	.044	0.96	1.12	b1	.037	.043	0.94	1.09
A2	.040	.042	1.02	1.07	b2	.037	.043	0.94	1.09
D	.928	.932	23.57	23.67	b3	.225	.231	5.72	5.87
D1	.810	BSC	20.5	7 BSC	c1	.007	.011	.18	.28
E	.551	.559	14.00	14.20	е	.054 BSC		1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.040 BSC		1.02 BSC	
E2	.346	.350	8.79	8.89	e2	.224 BSC		5.69 BSC	
F	.025	.025 BSC 0.64 BSC		4 BSC	e3	.150 BSC		3.81 BSC	
М	.600		15.24		r1	.063	.068	1.6	1.73
N	.270		6.86						
					aaa	.004		.10	
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.				MECHANICAL OUTLINE			PRINT VERSION NOT TO SCALE		

TITLE:


TO-272 WIDE BODY MULTI-LEAD

 DOCUMENT NO: 98ARH99164A
 REV: L

 CASE NUMBER: 1329-09
 13 MAR 2006


 STANDARD: NON-JEDEC

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	AL OUTLINE PRINT VERSION NOT TO SCALE			
TITLE: TO-272WB, 16 LE	DOCUMENT NO	REV: E			
GULL WING	CASE NUMBER: 1329A-03 3 APR 200				
PLASTIC	STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-272WB, 16 LE	DOCUMENT NO	REV: E		
GULL WING	CASE NUMBER: 1329A-03 3 APR 2006			
PLASTIC	STANDARD: NON-JEDEC			

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS EXPOSED AREA OF THE HEAT SLUG, HATCHED AREA SHOWN IS ON THE SAME PLANE.

	INCH		MILLIMETER				INCH	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	.100	.104	2.54	2.64	Ь	.011	.017	0.28	0.43
A1	.001	.004	0.02	0.10	b1	.037	.043	0.94	1.09
A2	.099	.110	2.51	2.79	b2	.037	.043	0.94	1.09
D	.928	.932	23.57	23.67	b3	.225	.231	5.72	5.87
D1	.810	.810 BSC 20.57 BSC		57 BSC	c1	.007	.011	.18	.28
E	.429	.437	10.9	11.1	е	.054 BSC		1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.040 BSC		1.02 BSC	
E2	.346	.350	8.79	8.89	e 2	.224 BSC		5.69 BSC	
L	.018	.024	4.90	5.06	e3	.150 BSC		3.81 BSC	
L1	.01 BSC .025 BSC		25 BSC	r1	.063	.068	1.6	1.73	
М	.600		15.24		t	2.	8*	2.	8.
N	.270		6.86						
					aaa	aaa .004			.10
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA				\L 0U1	PRINT VERSION NOT TO			T TO SCALE
TITLE:	TITLE: TO-272WB, 16 LEAD			DOCL	DOCUMENT NO: 98ASA10532D REV: E			REV: E	
GULL WING			CASE NUMBER: 1329A-03 3 APR 20			3 APR 2006			
PLASTIC				STANDARD: NON-JEDEC					

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed: Freescale Semiconductor

Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Document Number: MW4IC2020N

Rev. 9, 5/2006