

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







MW4IC915 Rev. 6, 5/2006

Technical Data

Replaced by MW4IC915NBR1 (GNBR1). There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations.

# RF LDMOS Wideband Integrated Power Amplifiers

The MW4IC915MB/GMB wideband integrated circuit is designed for GSM and GSM EDGE base station applications. It uses Freescale's newest High Voltage (26 to 28 Volts) LDMOS IC technology and integrates a multi-stage structure. Its wideband On-Chip design makes it usable from 750 to 1000 MHz. The linearity performances cover all modulations for cellular applications: GSM, GSM EDGE, TDMA, N-CDMA and W-CDMA.

#### **Final Application**

Typical Performance: V<sub>DD</sub> = 26 Volts, I<sub>DQ1</sub> = 60 mA, I<sub>DQ2</sub> = 240 mA, P<sub>out</sub> = 15 Watts CW, Full Frequency Band (860-960 MHz)
 Power Gain — 30 dB
 Power Added Efficiency — 44%

#### **Driver Application**

Typical GSM/GSM EDGE Performances: V<sub>DD</sub> = 26 Volts, I<sub>DQ1</sub> = 60 mA, I<sub>DQ2</sub> = 240 mA, P<sub>out</sub> = 3 Watts Avg., Full Frequency Band (869-894 MHz and 921-960 MHz)

Power Gain — 31 dB

Power Added Efficiency — 19%

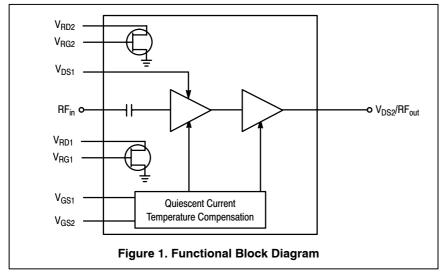
Spectral Regrowth @ 400 kHz Offset = -65 dBc

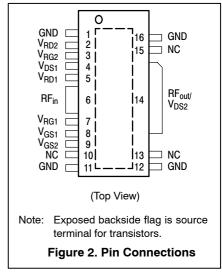
Spectral Regrowth @ 600 kHz Offset = -83 dBc

**EVM** — 1.5%

- Capable of Handling 5:1 VSWR, @ 26 Vdc, 921 MHz, 15 Watts CW Output Power
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function
- On-Chip Current Mirror g<sub>m</sub> Reference FET for Self Biasing Application<sup>(1)</sup>
- Integrated ESD Protection
- 200°C Capable Plastic Package
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.

### MW4IC915MBR1 MW4IC915GMBR1


860 - 960 MHz, 15 W, 26 V GSM/GSM EDGE, N-CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS




CASE 1329-09 TO-272 WB-16 PLASTIC MW4IC915MBR1



CASE 1329A-03 TO-272 WB-16 GULL PLASTIC MW4IC915GMBR1





 Refer to AN1987/D, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to <a href="http://www.freescale.com/rf.">http://www.freescale.com/rf.</a> Select Documentation/Application Notes - AN1987.





#### **Table 1. Maximum Ratings**

| Rating                         | Symbol           | Value       | Unit |
|--------------------------------|------------------|-------------|------|
| Drain-Source Voltage           | V <sub>DSS</sub> | -0.5. +65   | Vdc  |
| Gate-Source Voltage            | V <sub>GS</sub>  | -0.5. +15   | Vdc  |
| Storage Temperature Range      | T <sub>stg</sub> | -65 to +175 | °C   |
| Operating Junction Temperature | T <sub>J</sub>   | 200         | °C   |

#### **Table 2. Thermal Characteristics**

|                                   | Characteristic                             | Symbol         | Value <sup>(1)</sup> | Unit |
|-----------------------------------|--------------------------------------------|----------------|----------------------|------|
| Thermal Resistance, Junction to C | Case                                       | $R_{	heta JC}$ |                      | °C/W |
| GSM Application                   | Stage 1, 26 Vdc, I <sub>DQ</sub> = 60 mA   |                | 7.3                  |      |
| (P <sub>out</sub> = 15 W CW)      | Stage 2, 26 Vdc, I <sub>DQ</sub> = 240 mA  |                | 1.7                  |      |
| GSM EDGE Application              | Stage 1, 26 Vdc, I <sub>DQ</sub> = 60 mA   |                | 7.3                  |      |
| (P <sub>out</sub> = 7.5 W CW)     | Stage 2, 26 Vdc, I <sub>DQ</sub> = 240 mA  |                | 1.8                  |      |
| CDMA Application                  | Stage 1, 26 Vdc, I <sub>DQ</sub> = 60 mA   |                | 7.4                  |      |
| (P <sub>out</sub> = 3.75 W CW)    | Stage 2, 26 Vdc, $I_{DQ} = 240 \text{ mA}$ |                | 1.9                  |      |

#### **Table 3. ESD Protection Characteristics**

| Test Conditions     | Class        |
|---------------------|--------------|
| Human Body Model    | 1 (Minimum)  |
| Machine Model       | M3 (Minimum) |
| Charge Device Model | C2 (Minimum) |

#### **Table 4. Moisture Sensitivity Level**

| Test Methodology                      | Rating | Package Peak Temperature | Unit |
|---------------------------------------|--------|--------------------------|------|
| Per JESD 22-A113, IPC/JEDEC J-STD-020 | 3      | 260                      | °C   |

## Table 5. Electrical Characteristics (T<sub>C</sub> = 25°C unless otherwise noted) Characteristic

| Functional Tests (In Freescale Test Fixture, 50 ohm system) V <sub>DS</sub> = 26 Vdc, I <sub>DO1</sub> = 90 mA, I <sub>DO2</sub> = 240 mA, P <sub>out</sub> = 15 W PEP, |                 |    |    |  |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|----|--|----|
| f1 = 869 MHz, f2 = 869.1 MHz and f1 = 960 MHz and f2 = 960.1 MHz, Two-Tone                                                                                              |                 |    |    |  |    |
| Power Gain                                                                                                                                                              | G <sub>ps</sub> | 29 | 31 |  | dB |

**Symbol** 

Min

| Power Gain                 | G <sub>ps</sub> | 29 | 31  | _    | dB  |
|----------------------------|-----------------|----|-----|------|-----|
| Power Added Efficiency     | PAE             | 29 | 31  | _    | %   |
| Intermodulation Distortion | IMD             | _  | -40 | - 29 | dBc |
| Input Return Loss          | IRL             | _  | -15 | -10  | dB  |

<sup>1.</sup> Refer to AN1955/D, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to <a href="http://www.freescale.com/rf">http://www.freescale.com/rf</a>. Select Documentation/Application Notes - AN1955.

(continued)

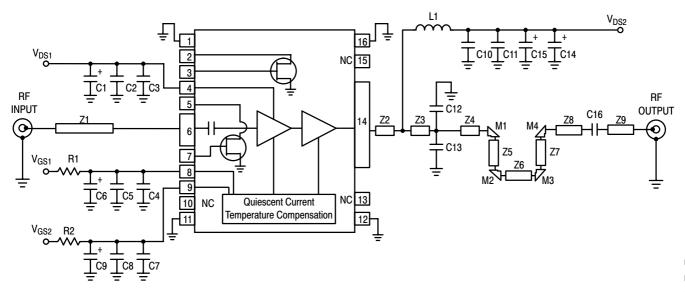
Unit

Max

Тур



Table 5. Electrical Characteristics (T<sub>C</sub> = 25°C unless otherwise noted) (continued)


| Characteristic                                                                                                                                                         | Symbol          | Min | Тур  | Max | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|------|-----|------|
| ypical Performances (In Freescale Reference Board) V <sub>DS</sub> = 26 V, I <sub>DQ1</sub> = 60 mA, I <sub>DQ2</sub> = 240 mA, 869 MHz <frequency>960 MHz</frequency> |                 |     |      |     | lz   |
| Quiescent Current Accuracy over Temperature with 1.8 k $\Omega$ Gate Feed Resistors (-10 to 85°C) <sup>(1)</sup>                                                       | $\Delta I_{QT}$ | _   | ±5   | _   | %    |
| Gain Flatness in 40 MHz Bandwidth @ Pout = 3 W CW                                                                                                                      | G <sub>F</sub>  | _   | 0.2  | _   | dB   |
| Deviation from Linear Phase in 40 MHz Bandwidth @ Pout = 3 W CW                                                                                                        | Φ               | _   | ±0.6 | _   | 0    |
| Delay @ Pout = 3 W CW Including Output Matching                                                                                                                        | Delay           | _   | 2.5  | _   | ns   |
| Part-to-Part Phase Variation @ Pout = 3 W CW                                                                                                                           | ΔΦ              | _   | ±15  | _   | 0    |

**Typical GSM/GSM EDGE Performances** (In Freescale Reference Board)  $V_{DS}$  = 26 V,  $I_{DQ1}$  = 60 mA,  $I_{DQ2}$  = 240 mA, 869 MHz<Frequency<960 MHz

| Output Power, 1dB Compression Point                                                | P1dB            | _ | 20  | _ | Watts |
|------------------------------------------------------------------------------------|-----------------|---|-----|---|-------|
| Power Gain @ P <sub>out</sub> = 15 W CW                                            | G <sub>ps</sub> | _ | 30  | _ | dB    |
| Power Added Efficiency @ Pout = 15 W CW                                            | PAE             | _ | 44  | _ | %     |
| Input Return Loss @ Pout = 15 W CW                                                 | IRL             | _ | -15 | _ | dB    |
| Error Vector Magnitude @ P <sub>out</sub> = 3 W Avg. including 0.6% rms source EVM | EVM             | _ | 1.5 | _ | % rms |
| Spectral Regrowth at 400 kHz Offset @ Pout = 3 W Avg.                              | SR1             | _ | -65 | _ | dBc   |
| Spectral Regrowth at 600 kHz Offset @ Pout = 3 W Avg.                              | SR2             | _ | -83 | _ | dBc   |

<sup>1.</sup> Refer to AN1977/D, *Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family.* Go to <a href="http://www.freescale.com/rf">http://www.freescale.com/rf</a>. Select Documentation/Application Notes - AN1977.





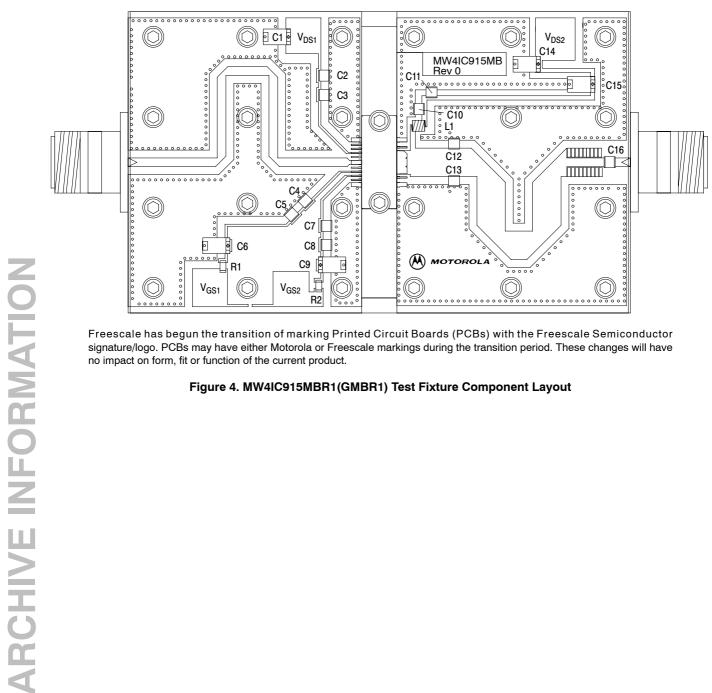

| Z1         | 0.086", 50 $\Omega$ Microstrip | <b>Z</b> 6 | 0.157" x 0.283" Microstrip                   |
|------------|--------------------------------|------------|----------------------------------------------|
| Z2         | 0.133" x 0.236" Microstrip     | <b>Z</b> 7 | 0.429" x 0.283" Microstrip                   |
| Z3         | 0.435" x 0.283" Microstrip     | Z8         | 0.394" x 0.088" Microstrip                   |
| Z4         | 0.171" x 0.283" Microstrip     | <b>Z</b> 9 | 0.181" x 0.088" Microstrip                   |
| <b>Z</b> 5 | 0.429" x 0.283" Microstrip     | PCB        | Taconic TLX8, 0.030", $\varepsilon_r = 2.55$ |

Figure 3. MW4IC915MBR1(GMBR1) Test Fixture Schematic

Table 6. MW4IC915MBR1(GMBR1) Test Fixture Component Designations and Values

| Part                 | Description                          | Part Number        | Manufacturer |
|----------------------|--------------------------------------|--------------------|--------------|
| C1, C6, C9, C14      | 22 μF, 35 V Tantalum Chip Capacitors | TAJE226M035R       | AVX          |
| C2, C5, C8, C11      | 1000 pF Chip Capacitors              | 100B102JCA500X     | ATC          |
| C3, C4, C7, C10, C16 | 22 pF Chip Capacitors                | 100B220JCA500X     | ATC          |
| C12, C13             | 10 pF Chip Capacitors                | 100B100JCA500X     | ATC          |
| C15                  | 10 μF Tantalum Chip Capacitor        | T491X226K035AS4394 | Kemet        |
| L1                   | 12.5 nH Inductor                     |                    |              |
| M1, M2, M3, M4       | 0.283", 90° Mitered Microstrip Bends |                    |              |
| R1, R2               | 10 kΩ, 1/4 W Chip Resistor (1206)    |                    |              |





Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 4. MW4IC915MBR1(GMBR1) Test Fixture Component Layout



ARCHIVE INFORMATION



| Z1 | 0.681" x 0.039", 50 Ω Microstrip | <b>Z</b> 5 | 0.566" x 0.043" Microstrip                 |
|----|----------------------------------|------------|--------------------------------------------|
| Z2 | 0.157" x 0.228" Microstrip       | Z6         | 0.165" x 0.043" Microstrip                 |
| Z3 | 0.468" x 0.157" Microstrip       | <b>Z</b> 7 | 0.078" x 0.043" Microstrip                 |
| Z4 | 0.220" x 0.157" Microstrip       | PCB        | Taconic RF35, 0.02", $\varepsilon_r = 3.5$ |

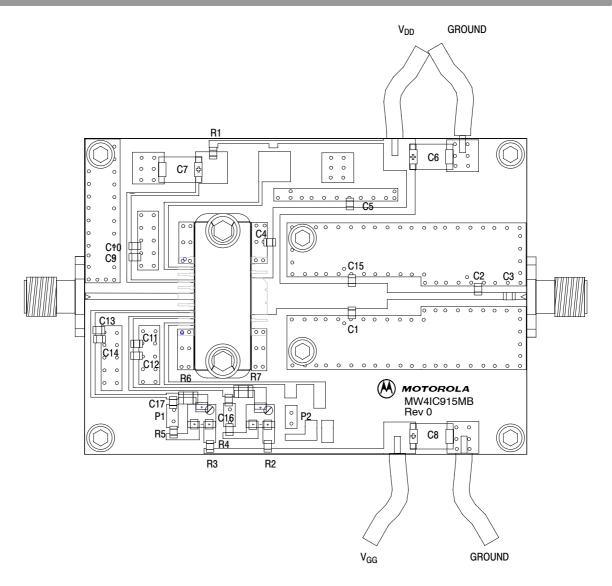

Figure 5. MW4IC915MBR1(GMBR1) Reference Board Schematic

Table 7. MW4IC915MBR1(GMBR1) Reference Board Component Designations and Values

| Part                 | Description                              | Part Number  | Manufacturer |
|----------------------|------------------------------------------|--------------|--------------|
| C1, C15              | 10 pF Chip Capacitors (0805), ACCU-P     | 08051J100GBT | AVX          |
| C2                   | 5.6 pF Chip Capacitor (0805), ACCU-P     | 08051J5R6BBT | AVX          |
| C3, C4, C9, C11, C13 | 33 pF Chip Capacitors (0805), ACCU-P     | 08051J330GB  | AVX          |
| C5, C10, C12, C14    | 10 nF Chip Capacitors (0805)             | 08055C103KAT | AVX          |
| C6, C7, C8           | 22 μF, 35 V Tantalum Capacitors          | TAJE226MO35R | AVX          |
| C16, C17             | 100 nF Chip Capacitors (0805)            | 08055C104KAT | AVX          |
| P1, P2               | 5 kΩ Potentiometer CMS Cermet Multi-turn | 3224W        | Bourns       |
| R1, R2, R3, R4, R5   | 0 Ω, 1/8 W Chip Resistors (0805)         |              |              |
| R6, R7               | 10 kΩ, 1/4 W Chip Resistors (1206)       |              |              |



**ARCHIVE INFORMATION** 



Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 6. MW4IC915MBR1(GMBR1) Reference Board Component Layout



#### TYPICAL CHARACTERISTICS (FREESCALE TEST FIXTURE, 50 OHM SYSTEM)

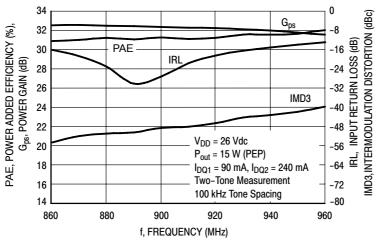



Figure 7. Two-Tone Wideband Circuit Performance @ Pout = 15 Watts PEP

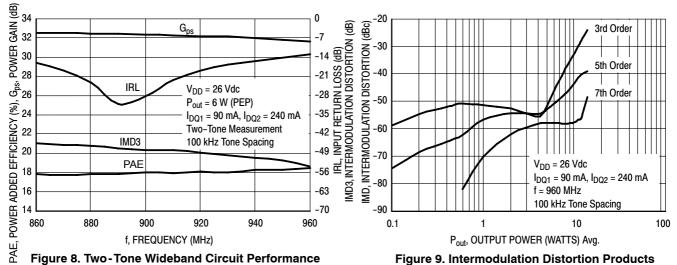



Figure 8. Two-Tone Wideband Circuit Performance
@ Pout = 6 Watts

Figure 9. Intermodulation Distortion Products versus Output Power

#### TYPICAL CHARACTERISTICS (FREESCALE REFERENCE BOARD)

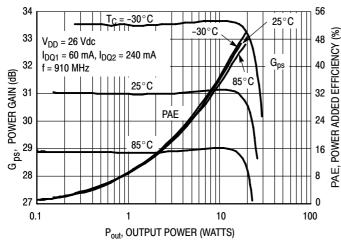



Figure 10. Power Gain and Power Added Efficiency versus Output Power

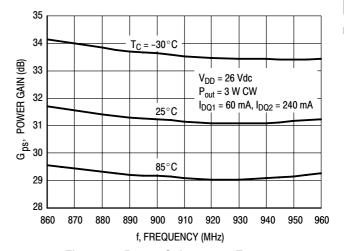



Figure 11. Power Gain versus Frequency

#### MW4IC915MBR1 MW4IC915GMBR1



ARCHIVE INFORMATION

#### TYPICAL CHARACTERISTICS (FREESCALE REFERENCE BOARD) - CONTINUED

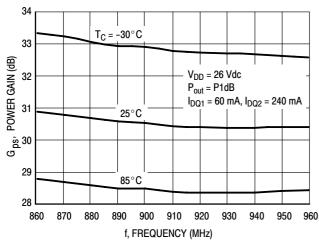



Figure 12. Power Gain versus Frequency

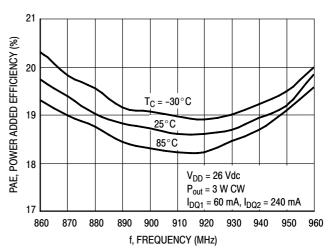



Figure 13. Power Added Efficiency versus Frequency

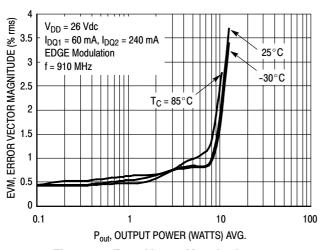



Figure 14. Error Vector Magnitude versus Output Power

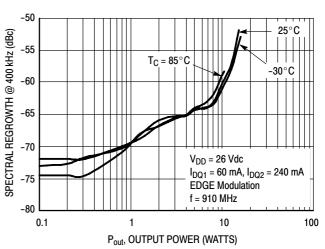



Figure 15. Spectral Regrowth at 400 kHz versus Output Power

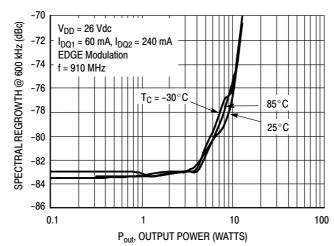
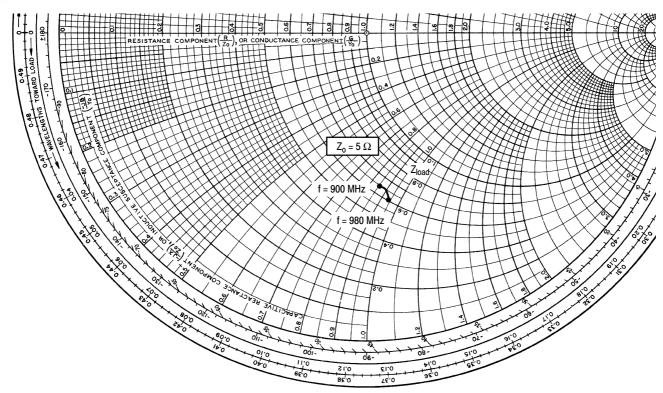




Figure 16. Spectral Regrowth at 600 kHz versus Output Power

MW4IC915MBR1 MW4IC915GMBR1





 $V_{DD}$  = 26 V,  $I_{DQ1}$  = 60 mA,  $I_{DQ2}$  = 240 mA,  $P_{out}$  = P1dB

| טט יטכ   | /  00 112 4 1DQ2 = 10 112 4 1 0ul 1 |
|----------|-------------------------------------|
| f<br>MHz | $oldsymbol{Z_{load}}{\Omega}$       |
| 900      | 3.23 - j4.30                        |
| 910      | 3.24 - j4.36                        |
| 920      | 3.25 - j4.42                        |
| 930      | 3.25 - j4.47                        |
| 940      | 3.23 - j4.52                        |
| 950      | 3.21 - j4.56                        |
| 960      | 3.16 - j4.60                        |
| 970      | 3.11 - j4.65                        |
| 980      | 3.04 - j4.70                        |

Z<sub>load</sub> = Test circuit impedance as measured from drain to ground.

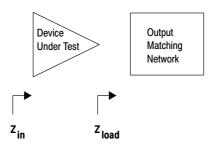
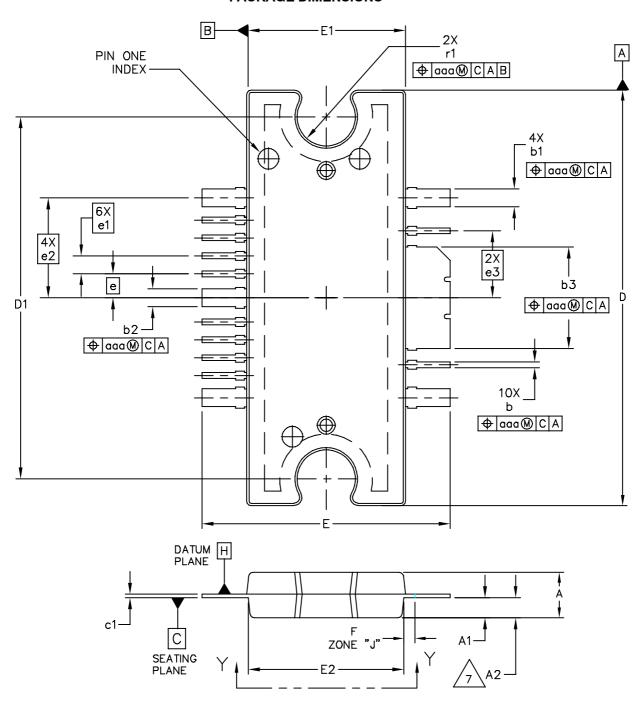



Figure 17. Series Equivalent Input and Load Impedance



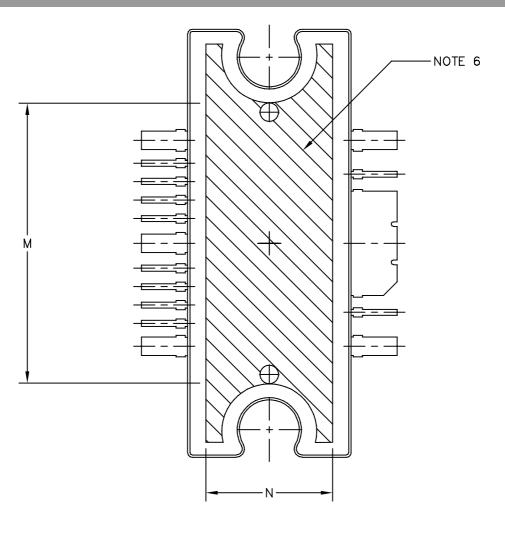
## **NOTES**




## **NOTES**



## **NOTES**




#### **PACKAGE DIMENSIONS**



| FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA                      | L OUTLINE    | PRINT VERSION NO | T TO SCALE |
|----------------------------------------------------|--------------------------------|--------------|------------------|------------|
| TITLE:                                             | DOCUMENT NO                    | REV: L       |                  |            |
| TO-272 WIDE BO MULTI-LEAD                          | CASE NUMBER: 1329-09 13 MAR 20 |              |                  |            |
| WOET LEAD                                          |                                | STANDARD: NO | N-JEDEC          |            |





VIEW Y-Y

| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA    | L OUTLINE      | PRINT VERSION NO | T TO SCALE |
|------------------------------------------------------|--------------|----------------|------------------|------------|
| TITLE:                                               | DOCUMENT NO  | ): 98ARH99164A | REV: L           |            |
| TO-272 WIDE BOI                                      | CASE NUMBER  | R: 1329–09     | 13 MAR 2006      |            |
| MOLTI-ELAD                                           | STANDARD: NO | N-JEDEC        |                  |            |

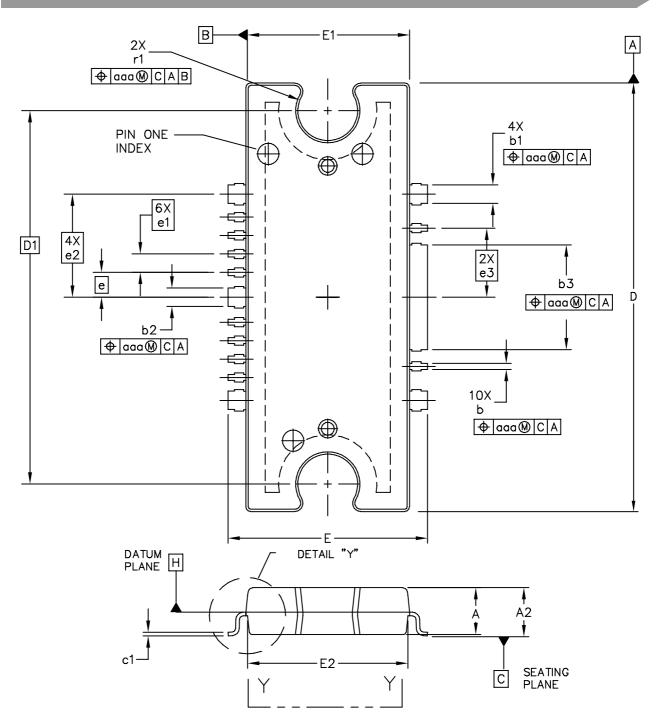


#### NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE —H—.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

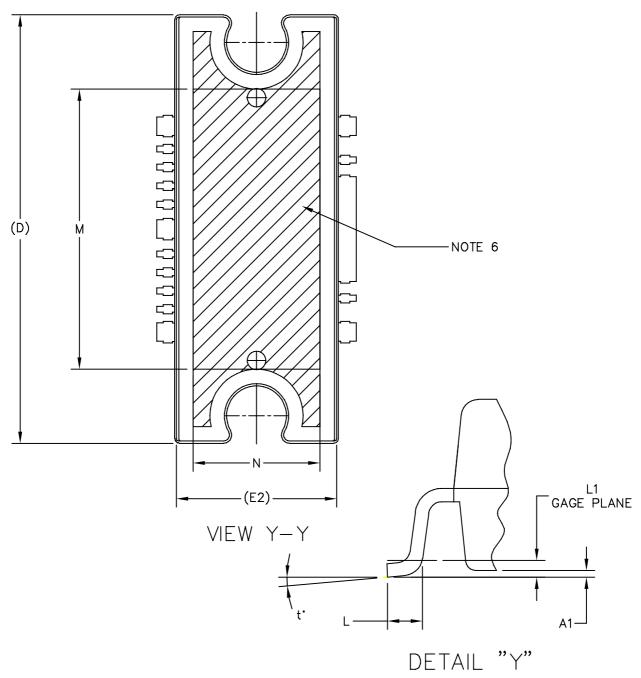
|     | IN                        | СН                            | MILLIN | METER     |       | INCH     |               | MILLIN     | METER   |
|-----|---------------------------|-------------------------------|--------|-----------|-------|----------|---------------|------------|---------|
| DIM | MIN                       | MAX                           | MIN    | MAX       | DIM   | MIN      | MAX           | MIN        | MAX     |
| Α   | .100                      | .104                          | 2.54   | 2.64      | b     | .011     | .017          | 0.28       | 0.43    |
| A1  | .038                      | .044                          | 0.96   | 1.12      | b1    | .037     | .043          | 0.94       | 1.09    |
| A2  | .040                      | .042                          | 1.02   | 1.07      | b2    | .037     | .043          | 0.94       | 1.09    |
| D   | .928                      | .932                          | 23.57  | 23.67     | b3    | .225     | .231          | 5.72       | 5.87    |
| D1  | .810                      | BSC                           | 20.57  | 7 BSC     | c1    | .007     | .011          | .18        | .28     |
| E   | .551                      | .559                          | 14.00  | 14.20     | е     | .0       | .054 BSC 1.37 |            | BSC     |
| E1  | .353                      | .357                          | 8.97   | 9.07      | e1    | .040 BSC |               | 1.02 BSC   |         |
| E2  | .346                      | .350                          | 8.79   | 8.89      | e2    | .224 BSC |               | 5.69 BSC   |         |
| F   | .025                      | BSC                           | 0.64   | BSC       | e3    | .1       | 50 BSC        | 3.81 BSC   |         |
| М   | .600                      |                               | 15.24  |           | r1    | .063     | .068          | 1.6        | 1.73    |
| N   | .270                      |                               | 6.86   |           |       |          |               |            |         |
|     |                           |                               |        |           | aaa   | .004     |               |            | 10      |
|     |                           |                               |        |           |       |          |               |            |         |
| ©   | FREESCALE SEI<br>ALL RIGH | MICONDUCTOR,<br>HTS RESERVED. | INC.   | MECHANICA | L OUT | LINE     | PRINT VERS    | SION NOT T | O SCALE |

TITLE:


TO-272 WIDE BODY MULTI-LEAD

 DOCUMENT NO: 98ARH99164A
 REV: L

 CASE NUMBER: 1329-09
 13 MAR 2006


 STANDARD: NON-JEDEC





| FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | L OUTLINE                      | PRINT VERSION NO | T TO SCALE |
|----------------------------------------------------|--------------------------------|------------------|------------|
| TITLE: TO-272WB, 16 LE                             | DOCUMENT NO                    | REV: E           |            |
| GULL WING                                          | CASE NUMBER: 1329A-03 3 APR 20 |                  |            |
| PLASTIC                                            | STANDARD: NO                   | N-JEDEC          |            |





| FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA    | L OUTLINE      | PRINT VERSION NO | T TO SCALE |
|----------------------------------------------------|--------------|----------------|------------------|------------|
| TITLE: TO-272WB, 16 LE                             | DOCUMENT NO  | ): 98ASA10532D | REV: E           |            |
| GULL WING                                          | CASE NUMBER  | 2: 1329A−03    | 3 APR 2006       |            |
| PLASTIC                                            | STANDARD: NO | N-JEDEC        |                  |            |



#### NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS EXPOSED AREA OF THE HEAT SLUG, HATCHED AREA SHOWN IS ON THE SAME PLANE.

|           | 11                                                               | NCH  | MIL   | LIMETER                     |                     | INCH            |            | МІ       | MILLIMETER |  |
|-----------|------------------------------------------------------------------|------|-------|-----------------------------|---------------------|-----------------|------------|----------|------------|--|
| DIM       | MIN                                                              | MAX  | MIN   | MAX                         | DIM                 | MIN             | MAX        | MIN      | MAX        |  |
| Α         | .100                                                             | .104 | 2.54  | 2.64                        | Ь                   | .011            | .017       | 0.28     | 0.43       |  |
| A1        | .001                                                             | .004 | 0.02  | 0.10                        | b1                  | .037            | .043       | 0.94     | 1.09       |  |
| A2        | .099                                                             | .110 | 2.51  | 2.79                        | b2                  | .037            | .043       | 0.94     | 1.09       |  |
| D         | .928                                                             | .932 | 23.57 | 23.67                       | b3                  | .225            | .231       | 5.72     | 5.87       |  |
| D1        | .810                                                             | BSC  | 20.   | 57 BSC                      | c1                  | .007            | .011       | .18      | .28        |  |
| E         | .429                                                             | .437 | 10.9  | 11.1                        | е                   | .054 BSC        |            | 1.       | 1.37 BSC   |  |
| E1        | .353                                                             | .357 | 8.97  | 9.07                        | e1                  | .040 BSC        |            | 1.02 BSC |            |  |
| E2        | .346                                                             | .350 | 8.79  | 8.89                        | <b>e</b> 2          | .224 BSC        |            | 5.       | 5.69 BSC   |  |
| L         | .018                                                             | .024 | 4.90  | 5.06                        | e3                  | .150 BSC        |            | 3.       | 3.81 BSC   |  |
| L1        | .01                                                              | BSC  | .02   | 25 BSC                      | r1                  | 1 .063 .068 1.6 |            | 1.6      | 1.73       |  |
| М         | .600                                                             |      | 15.24 |                             | t                   | 2.              | 8*         | 2.       | 8.         |  |
| N         | .270                                                             |      | 6.86  |                             |                     |                 |            |          |            |  |
|           |                                                                  |      |       |                             | aaa                 | .004            |            | .10      |            |  |
| © F       | © FREESCALE SEMICONDUCTOR, INC.  ALL RIGHTS RESERVED.  MECHANICA |      |       |                             | \L 0U1              | TLINE           | PRINT VER  | SION NO  | T TO SCALE |  |
| TITLE:    | TITLE: TO-272WB, 16 LEAD                                         |      |       | DOCL                        | JMENT NO            | ): 98ASA10532   | 2D         | REV: E   |            |  |
| GULL WING |                                                                  |      |       | CASE NUMBER: 1329A-03 3 APR |                     |                 | 3 APR 2006 |          |            |  |
|           | PLASTIC                                                          |      |       |                             | STANDARD: NON-JEDEC |                 |            |          |            |  |



#### How to Reach Us:

**Home Page:** 

www.freescale.com

E-mail:

support@freescale.com

**USA/Europe or Locations Not Listed:** Freescale Semiconductor

Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale <sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

