imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Technical Data

RF LDMOS Wideband Integrated Power Amplifiers

The MW6IC2015N wideband integrated circuit is designed for base station applications. It uses Freescale's newest High Voltage (26 to 32 Volts) LDMOS IC technology and integrates a multi-stage structure. Its wideband on-chip design makes it usable from 1805 to 1990 MHz. The linearity performances cover all modulation formats for cellular applications: GSM, GSM EDGE, PHS, TDMA, CDMA, W-CDMA and TD-SCDMA.

Final Application

 Typical Two - Tone Performance: V_{DD} = 26 Volts, I_{DQ1} = 100 mA, I_{DQ2} = 170 mA, P_{out} = 15 Watts PEP, f = 1930 MHz Power Gain — 26 dB Power Added Efficiency — 28% IMD — -30 dBc

Driver Application

• Typical GSM EDGE Performance: V_{DD} = 26 Volts, I_{DQ1} = 130 mA, I_{DQ2} = 170 mA, P_{out} = 3 Watts Avg., Full Frequency Band (1805-1880 MHz or 1930-1990 MHz)

Power Gain -27 dBPower Added Efficiency — 19% Spectral Regrowth @ 400 kHz Offset = -69 dBc Spectral Regrowth @ 600 kHz Offset = -78 dBc EVM — 0.8% rms

- Capable of Handling 3:1 VSWR, @ 26 Vdc, 1990 MHz, 15 Watts CW Output Power
- Stable into a 3:1 VSWR. All Spurs Below -60 dBc @ 100 mW to 8 W CW ${\rm P}_{\rm out}.$

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters
 and Common Source Scattering Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function ⁽¹⁾
- Integrated ESD Protection
- Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications
- 225°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel

1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

Document Number: MW6IC2015N

Rev. 3, 12/2008

1805-1990 MHz, 15 W, 26 V GSM/GSM EDGE, CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS

MW6IC2015GNBR1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +68	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +6	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

	Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction	to Case	$R_{\theta JC}$		°C/W
Final Application (P _{out} = 15 W CW)	Stage 1, 26 Vdc, I _{DQ1} = 100 mA Stage 2, 26 Vdc, I _{DQ2} = 170 mA		4.3 1.2	
Driver Application (P _{out} = 3 W CW)	Stage 1, 26 Vdc, I _{DQ1} = 130 mA Stage 2, 26 Vdc, I _{DQ2} = 170 mA		4.3 1.3	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	III (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Мах	Unit
Functional Tests (In Freescale 1930-1990 MHz Test Fixture, 50 ohm syste	em) V _{DD} = 26	Vdc, $I_{DQ1} = 1$	00 mA, I _{DQ2}	= 170 mA, P	out = 15 W

PEP, f1 = 1930 MHz, f2 = 1930.1 MHz, Two-Tone CW

Power Gain	G _{ps}	24	26		dB
Power Added Efficiency	PAE	26	28	—	%
Intermodulation Distortion	IMD	_	-30	-27	dBc
Input Return Loss	IRL	—	—	- 10	dB

Typical Two-Tone Performances (In Freescale Test Fixture, 50 ohm system) V_{DD} = 26 Vdc, I_{DQ1} = 100 mA, I_{DQ2} = 170 mA, P_{out} = 15 W PEP, 1805-1880 MHz, Two-Tone CW, 100 kHz Tone Spacing

Power Gain	G _{ps}	_	26	—	dB
Power Added Efficiency	PAE	_	28	—	%
Intermodulation Distortion	IMD	_	-30	—	dBc
Input Return Loss	IRL	_	-10	—	dB

1. Continuous use at maximum temperature will affect MTTF.

 MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

(continued)

Table 5. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) V_{DD} = 1930-1990 MHz	26 Vdc, I _{DQ1} =	100 mA, I _{DC}	₂ = 170 mA,	1805-1880 N	IHz and
Saturated Pulsed Output Power, CW (8 μsec(on), 1 msec(off))	P _{sat}		35		W
Quiescent Current Accuracy over Temperature with 1.8 kΩ Gate Feed Resistors (-10 to 85°C) ⁽¹⁾	Δl _{QT}		±3	_	%
Gain Flatness in 30 MHz Bandwidth @ Pout = 3 W CW	G _F	_	0.3	_	dB
Average Deviation from Linear Phase in 30 MHz Bandwidth @ P _{out} = 3 W CW	Φ	_	±1	_	0
Average Group Delay @ Pout = 3 W CW Including Output Matching	Delay	_	2.7	_	ns
Part-to-Part Insertion Phase Variation @ P _{out} = 3 W CW, Six Sigma Window	$\Delta \Phi$	_	±15	_	0

Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V_{DD} = 26 Vdc, I_{DQ1} = 130 mA, I_{DQ2} = 170 mA, P_{out} = 3 W Avg., 1805-1990 MHz and 1930-1990 MHz EDGE Modulation

Power Gain	Gns		27		dB
Dower Added Efficiency			10		0/
Power Added Elliciency	PAE		19		70
Error Vector Magnitude	EVM	—	0.8	—	%
Spectral Regrowth at 400 kHz Offset	SR1	—	-69	—	dBc
Spectral Regrowth at 600 kHz Offset	SR2	—	-78	—	dBc

1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

Figure 3. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1930-1990 MHz

Table 6. MW6IC2015NBR1(GNBR1) Test Circuit Componen	t Designations and Values — 1930-1990 MHz
---	---

Part	Description	Part Number	Manufacturer
C1, C14, C15	2.2 μF Chip Capacitors	C3225X5R1H225MT	TDK
C2, C4, C11	5.6 pF Chip Capacitors	ATC100B5R6CT500XT	ATC
C3, C5	10 µF Chip Capacitors	C5750X5R1H106MT	TDK
C6	1 pF Chip Capacitor	ATC100B1R0BT500XT	ATC
C7, C8	2.2 pF Chip Capacitors	ATC100B2R2BT500XT	ATC
C9, C10	0.5 pF Chip Capacitors	ATC100B0R5BT500XT	ATC
C12	0.2 pF Chip Capacitor	ATC100B0R2BT500XT	ATC
C13	0.1 pF Chip Capacitor	ATC100B0R1BT500XT	ATC
R1	10 kΩ, 1/4 W Chip Resistor	CRCW12061002FKEA	Vishay
R2	18 Ω, 1/4 W Chip Resistor	CRCW120618R0FKEA	Vishay

Figure 4. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout - 1930-1990 MHz

TYPICAL CHARACTERISTICS — 1930-1990 MHz

TYPICAL CHARACTERISTICS — 1930-1990 MHz -10 28 32 S21 30 27 -15 G_{ps}, Power Gain (dB) 28 S11 (dB) S21 (dB) 26 26 $V_{DD} = 26 \text{ Vdc}$ 25 -25 P_{out} = 35 dBm CW 24 I_{DQ1} = 100 mA S11 I_{DQ2} = 170 mA 24 -30 22 1850 1900 1950 2000 2050 2100 1880 1900 f, FREQUENCY (MHz)

 $T_C = -30^{\circ}C$

MW6IC2015NBR1 MW6IC2015GNBR1

EVM, ERROR VECTOR MAGNITUDE (% ms)

TYPICAL CHARACTERISTICS

This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 26 Vdc, P_{out} = 15 W PEP, and PAE = 28%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

GSM TEST SIGNAL

Figure 19. EDGE Spectrum

 V_{DD} = 26 Vdc, I_{DQ1} = 100 mA, I_{DQ2} = 170 mA, P_{out} = 15 W CW

f MHz	Z _{source} Ω	Z _{load} Ω
1930	23.37 - j21.93	1.62 + j0.26
1950	22.77 - j22.53	1.59 + j0.04
1970	22.19 - j22.20	1.57 - j0.16
1990	22.64 - j21.84	1.54 - j0.36

 Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

Figure 20. Series Equivalent Source and Load Impedance — 1930-1990 MHz

Figure 21. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1805-1880 MHz

Part	Description	Part Number	Manufacturer
C1, C14, C15	2.2 µF Chip Capacitors	C3225X5R1H225MT	TDK
C2, C4, C11	5.6 pF Chip Capacitors	ATC100B5R6CT500XT	ATC
C3, C5	10 μF Chip Capacitors	C5750X5R1H106MT	TDK
C6	1.5 pF Chip Capacitor	ATC100A1R5BT500XT	ATC
C7, C8	2.7 pF Chip Capacitors	ATC100B2R7BT500XT	ATC
C9, C10, C12	0.8 pF Chip Capacitors	ATC100B0R8BT500XT	ATC
C13	0.1 pF Chip Capacitor	ATC100B0R1BT500XT	ATC
C16	1 pF Chip Capacitor	ATC100B1R0BT500XT	ATC
R1	10 kΩ, 1/4 W Chip Resistor	CRCW12061002FKEA	Vishay
R2	18 Ω, 1/4 W Chip Resistor	CRCW120618R0FKEA	Vishay

Table 7. MW6IC2015NBR ⁻	(GNBR1) Test	Circuit Compor	nent Designations and	Values — 1805-1880 MHz
------------------------------------	--------------	-----------------------	-----------------------	------------------------

Figure 22. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout - 1805-1880 MHz

TYPICAL CHARACTERISTICS - 1805-1880 MHz

TYPICAL CHARACTERISTICS - 1805-1880 MHz

 V_{DD} = 26 Vdc, I_{DQ1} = 130 mA, I_{DQ2} = 170 mA, P_{out} = 3 W Avg.

f MHz	Z _{source} Ω	Z _{load} Ω
1800	24.32 - j26.99	1.94 - j1.29
1820	23.96 - j25.93	1.88 - j1.42
1840	23.86 - j25.63	1.83 - j1.54
1860	23.01 - j24.23	1.79 - j1.64
1880	23.55 - j23.33	1.74 - j1.75

 Z_{source} = Test circuit impedance as measured from gate to ground.

Figure 36. Series Equivalent Source and Load Impedance — 1805-1880 MHz

TD-SCDMA CHARACTERIZATION

Figure 37. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — TD-SCDMA

Part	Description	Part Number	Manufacturer
C1, C3, C5, C14	2.2 µF Chip Capacitors	C3225X5R1H225MT	TDK
C2, C4, C10	5.6 pF Chip Capacitors	08051J5R6CBS	AVX
C6	1 pF Chip Capacitor	08051J1R0BBS	AVX
C7, C8	2.7 pF Chip Capacitors	08051J2R7CBS	AVX
C9, C11	0.5 pF Chip Capacitors	08051J0R5BBS	AVX
C12, C13	100 nF Chip Capacitors	C1206CK104K5RC	Kemet
R1, R2	5 k Ω Potentiometer CMS Cermet Multi-turn	3224W	Bourns

Figure 38. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — TD-SCDMA

TYPICAL CHARACTERISTICS

TD-SCDMA TEST SIGNAL

0.12 0.13 0.14 0.1 9,0 80 3 .0 6 0 Z₀ = 50 Ω ≧∄ Z_{load} Z_{source} VAVELEA \mathcal{H} f = 2070 MHz f = 2070 MHz 2 0.6 8 0.7 Γö 8 180 ONENT (G) f = 1950 MHz f = 1950 MHz

f MHz	Z _{source} Ω	Z_{load}
1950	25.25 + j0.19	1.78 + j0.33
1960	25.16 + j0.34	1.75 + j0.43
1970	25.07 + j0.49	1.72 + j0.54
1980	24.98 + j0.64	1.68 + j0.67
1990	24.89 + j0.79	1.65 + j0.78
2000	24.80 + j0.94	1.63 + j0.89
2010	24.71 + j1.09	1.62 + j1.00
2020	24.63 + j1.25	1.61 + j1.09
2030	24.54 + j1.40	1.58 + j1.19
2040	24.45 + j1.56	1.55 + j1.31
2050	24.37 + j1.71	1.50 + j1.43
2060	24.28 + j1.87	1.48 + j1.62
2070	24.20 + j2.03	1.46 + j1.65

 V_{DD} = 28 Vdc, I_{DQ1} = 150 mA, I_{DQ2} = 160 mA

 Z_{source} = Test circuit impedance as measured from gate to ground.

Figure 43. Series Equivalent Input and Load Impedance — TD-SCDMA

PACKAGE DIMENSIONS

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-272 WIDE BODY MULTI-LEAD		DOCUMENT NO): 98ARH99164A	REV: M	
		CASE NUMBER: 1329-09 23 AUG 2007			
		STANDARD: NO	DN-JEDEC		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

	INCH		MILLIMETER		INCH		М	ILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	.100	.104	2.54	2.64	b	.011	.017	0.28	3 0.43	
A1	.038	.044	0.96	1.12	b1	.037	.043	0.94	l 1.09	
A2	.040	.042	1.02	1.07	b2	.037	.043	0.94	l 1.09	
D	.928	.932	23.57	23.67	b3	.225	.231	5.72	2 5.87	
D1	.810	BSC	20	.57 BSC	c1	.007	.011	.18	.28	
E	.551	.559	14.00	14.20	е	.054 BSC			1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.C	40 BSC		1.02 BSC	
E2	.346	.350	8.79	8.89	e2	.2	24 BSC	5	5.69 BSC	
F	.025	BSC	0.	.64 BSC	eЗ	.1	50 BSC		3.81 BSC	
М	.600		15.24		r1	.063	.068	1.6	1.73	
Ν	.270		6.86							
					aaa		.004		.10	
© F	© FREESCALE SEMICONDUCTOR, INC. MECHANICA		L OUT	LINE	PRINT VERS	SION NO	T TO SCALE			
TITLE:			DOCU	MENT NO): 98ARH99164,	A	REV: M			
IO-2/2 WIDE BODY			CASE NUMBER: 1329-09 23 AUG		23 AUG 2007					
MUL II-LEAD			STAN	DARD: NO	N-JEDEC		·			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANI		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-272WB, 16 LEAD		DOCUMENT NO): 98ASA10532D	REV: F
GULL WING	CASE NUMBER: 1329A-04 20 JUN 2007			
PLASTIC	STANDARD: JE	DEC MO-253 BA		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA			L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-272WB 16 LEAD		DOCUMENT NO: 98ASA10532D REV: F			
GULL WING PLASTIC			CASE NUMBER: 1329A-04 20 JUN 2007		
			STANDARD: JE	DEC MO-253 BA	