mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Document Number: MW7IC18100N Rev. 3, 3/2009

<u>√Ro</u>HS

RF LDMOS Wideband Integrated Power Amplifiers

The MW7IC18100N wideband integrated circuit is designed with on-chip matching that makes it usable from 1805 to 2050 MHz. This multi-stage structure is rated for 24 to 32 Volt operation and covers all typical cellular base station modulations including GSM EDGE and CDMA.

Final Application

• Typical GSM Performance: V_{DD} = 28 Volts, I_{DQ1} = 180 mA, I_{DQ2} = 1000 mA, P_{out} = 100 Watts CW, 1805-1880 MHz or 1930-1990 MHz Power Gain — 30 dB Power Added Efficiency — 48%

GSM EDGE Application

- Typical GSM EDGE Performance: V_{DD} = 28 Volts, I_{DQ1} = 215 mA, I_{DQ2} = 800 mA, P_{out} = 40 Watts Avg., 1805-1880 MHz or 1930-1990 MHz Power Gain — 31 dB Power Added Efficiency — 35%
 - Spectral Regrowth @ 400 kHz Offset = -63 dBc Spectral Regrowth @ 600 kHz Offset = -80 dBc EVM — 1.5% rms
- Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW Output Power
- Stable into a 5:1 VSWR. All Spurs Below -60 dBc @ 1 mW to 120 Watts CW P_{out}.

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters
 and Common Source Scattering Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function ⁽¹⁾
- Integrated ESD Protection
- 225°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.

 Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +6	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	т _с	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C

Table 2. Thermal Characteristics

	Symbol	Value ^(2,3)	Unit	
Thermal Resistance, Junction to	Case	$R_{\theta JC}$		°C/W
GSM Application	Stage 1, 28 Vdc, I _{DQ1} = 180 mA		2.0	
$(P_{out} = 100 \text{ W CW})$	Stage 2, 28 Vdc, I _{DQ2} = 1000 mA		0.51	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1 (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	III (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Мах	Unit
Functional Tests (4) (In Freescale Test Fixture 50 ohm system) Vpp - 28 Vd	c P 100 \	WCW loor -	180 mA loo		

Functional Tests ⁽⁴⁾ (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $P_{out} = 100$ W CW, $I_{DQ1} = 180$ mA, $I_{DQ2} = 1000$ mA, f = 1990 MHz.

Power Gain	G _{ps}	27	30	31	dB
Input Return Loss	IRL	—	-15	- 10	dB
Power Added Efficiency	PAE	45	48	—	%
Pout @ 1 dB Compression Point, CW	P1dB	100	112	_	W

Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ1} = 215$ mA, $I_{DQ2} = 800$ mA, $P_{out} = 40$ W Avg., 1805-1880 MHz or 1930-1990 MHz EDGE Modulation.

Power Gain	G _{ps}	—	31	—	dB
Power Added Efficiency	PAE	—	35	—	%
Error Vector Magnitude	EVM	—	1.5	—	% rms
Spectral Regrowth at 400 kHz Offset	SR1	—	-63	—	dBc
Spectral Regrowth at 600 kHz Offset	SR2	_	-80	—	dBc

1. Continuous use at maximum temperature will affect MTTF.

 MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

3. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

4. Measurement made with device in straight lead configuration before any lead forming operation is applied.

(continued)

Characteristic	Symbol	Min	Тур	Max	Unit		
Typical Performances (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ1} = 180 mA, I _{DQ2} = 1000 mA, 1930-1990 MHz Bandwidth							
Gain Flatness in 60 MHz Bandwidth @ P _{out} = 100 W CW	G _F	_	0.37	_	dB		
Average Deviation from Linear Phase in 60 MHz Bandwidth @ P _{out} = 100 W CW	Φ	_	0.502	_	0		
Average Group Delay @ P _{out} = 100 W CW, f = 1960 MHz	Delay	—	2.57	—	ns		
Part-to-Part Insertion Phase Variation @ P _{out} = 100 W CW, f = 1960 MHz, Six Sigma Window	$\Delta \Phi$		63.65		0		
Gain Variation over Temperature (-30°C to +85°C)	ΔG	—	0.048		dB/°C		
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB		0.004	_	dBm/°C		

Table 5. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted) (continued)

Figure 3. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1900 MHz

Part	Description	Part Number	Manufacturer			
C1, C2, C3, C4, C5	6.8 pF Chip Capacitors	ATC100B6R8BT500XT	ATC			
C6, C7, C8, C9	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata			
C10, C11	0.2 pF Chip Capacitors	ATC100B0R2BT500XT	ATC			
C12, C13	0.5 pF Chip Capacitors	ATC100B0R5BT500XT	ATC			
C14	0.8 pF Chip Capacitor	ATC100B0R8BT500XT	ATC			
C15	1.5 pF Chip Capacitor	ATC100B1R5BT500XT	ATC			
C16	2.2 µF, 16 V Chip Capacitor	C1206C225K4RAC	Kemet			
C17	470 μF, 63 V Electrolytic Capacitor, Radial	477KXM063M	Illinois Capacitor			
R1, R2	10 KΩ, 1/4 W Chip Resistors	CRCW12061001FKEA	Vishay			

Figure 4. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout - 1900 MHz

Figure 5. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ P_{out} = 100 Watts CW

Figure 6. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ P_{out} = 40 Watts Avg.

MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1

Figure 14. Power Gain and Power Added

Efficiency versus Output Power

Figure 16. EVM versus Frequency

Figure 18. Spectral Regrowth at 400 kHz versus Output Power

This above graph displays calculated MTTF in hours when the device is operated at V_DD = 28 Vdc, P_{out} = 100 W CW, and PAE = 48%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 23. MTTF versus Junction Temperature

GSM TEST SIGNAL

 $V_{DD1} = V_{DD2} = 28$ Vdc, $I_{DQ1} = 180$ mA, $I_{DQ2} = 1000$ mA, $P_{out} = 100$ W CW

f MHz	Z _{in} Ω	Z _{load} Ω
1880	67.48 - j17.89	2.324 - j3.239
1900	60.03 - j20.86	2.234 - j3.105
1920	53.65 - j21.94	2.135 - j2.965
1940	48.13 - j21.94	2.037 - j2.818
1960	43.52 - j21.22	1.936 - j2.666
1980	39.60 - j20.00	1.851 - j2.509
2000	36.14 - j18.52	1.765 - j2.355
2020	33.19 - j16.57	1.669 - j2.193
2040	30.96 - j14.58	1.559 - j2.012

 $\label{eq:Zin} \begin{array}{rcl} \mathsf{Z}_{in} & = & \mathsf{Device input impedance as measured from} \\ & & \mathsf{gate to ground.} \end{array}$

Figure 25. Series Equivalent Input and Load Impedance - 1900 MHz

f	S ₁₁		S	S ₂₁		S ₁₂		22
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
1500	0.612	118.5	6.369	69.06	0.002	102.9	0.615	47.74
1550	0.557	104.3	11.42	18.29	0.003	85.09	0.666	-41.54
1600	0.491	88.33	16.92	-34.34	0.005	59.06	0.844	- 113.4
1650	0.410	70.24	23.21	-84.03	0.005	28.40	0.931	-163.4
1700	0.313	48.99	30.49	-135.7	0.006	7.983	0.887	155.6
1750	0.216	21.99	32.64	168.8	0.007	- 15.63	0.700	120.3
1800	0.131	-22.83	32.93	114.0	0.006	-35.27	0.475	95.71
1850	0.117	-95.13	32.62	65.01	0.006	-53.22	0.332	82.10
1900	0.185	-146.3	32.58	20.45	0.006	-77.03	0.252	68.30
1950	0.253	- 177.3	32.45	-22.53	0.007	-98.93	0.165	47.02
2000	0.303	160.4	32.41	-65.29	0.007	-108.4	0.052	8.742
2050	0.328	139.5	32.33	-108.6	0.006	-127.3	0.070	-154.8
2100	0.331	117.9	32.50	-152.7	0.008	-145.8	0.161	179.9
2150	0.273	91.65	32.84	160.2	0.008	-169.1	0.257	165.7
2200	0.141	64.27	32.52	109.2	0.008	162.7	0.424	150.3
2250	0.050	172.7	28.92	56.72	0.009	138.3	0.641	123.4
2300	0.194	163.4	21.30	8.112	0.007	112.6	0.804	91.99
2350	0.270	139.7	14.62	-34.53	0.007	97.74	0.879	62.03
2400	0.288	118.9	9.878	-72.70	0.007	84.37	0.910	34.57
2450	0.274	100.6	6.771	-107.5	0.007	70.79	0.911	8.878
2500	0.236	83.35	4.579	-141.3	0.007	55.31	0.903	-16.73

Table 7. Common Source S-Parameters (V_{DD} = 28 V, I_{DQ1} = 180 mA, I_{DQ2} = 1000 mA, T_C = 25°C, 50 Ohm System)

ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS - 1900 MHz

NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V

Test Impedances per Compression Level

	Z_{source}	Z_{load}
P3dB	40.2 - j30.91	0.96 - j3.14

Figure 26. Pulsed CW Output Power versus Input Power @ 28 V

Figure 27. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic - 1800 MHz

Table 8. MW7IC18100NR1	(GNR1)(NBR1) 1	Test Circuit Comp	ponent Designation	ns and Values — 1800 MHz
------------------------	---------	---------	-------------------	--------------------	--------------------------

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5	6.8 pF Chip Capacitors	ATC100B6R8BT500XT	ATC
C6, C7, C8, C9	10 µF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C10, C11	0.2 pF Chip Capacitors	ATC100B0R2BT500XT	ATC
C12, C13	0.8 pF Chip Capacitors	ATC100B0R8BT500XT	ATC
C14	1.2 pF Chip Capacitor	ATC100B1R2BT500XT	ATC
C15	1.0 pF Chip Capacitor	ATC100B1R0BT500XT	ATC
C16	2.2 µF, 16 V Chip Capacitor	C1206C225K4RAC	Kemet
C17	470 µF, 63 V Electrolytic Capacitor, Radial	477KXM063M	Illinois Capacitor
R1, R2	10 KΩ, 1/4 W Chip Resistors	CRCW12061001FKEA	Vishay

Figure 28. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1800 MHz

Figure 29. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ P_{out} = 100 Watts CW

Figure 30. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ P_{out} = 40 Watts Avg.

Figure 40. EVM versus Frequency

Figure 42. Spectral Regrowth at 400 kHz versus Output Power

 $V_{DD1} = V_{DD2} = 28$ Vdc, $I_{DQ1} = 180$ mA, $I_{DQ2} = 1000$ mA, $P_{out} = 100$ W CW

f MHz	Z _{in} Ω	Z _{load} Ω
1760	71.78 + j40.05	2.983 - j3.974
1780	79.83 + j31.13	2.872 - j3.861
1800	84.35 + j19.44	2.757 - j3.745
1820	84.75 + j7.234	2.636 - j3.639
1840	81.21 - j4.076	2.535 - j3.506
1860	74.76 - j12.32	2.434 - j3.376
1880	67.49 - j17.89	2.324 - j3.239
1900	60.03 - j20.86	2.234 - j3.105
1920	53.65 - j21.94	2.135 - j2.965

Figure 46. Series Equivalent Input and Load Impedance — 1800 MHz

NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V

Test Impedances per Compression Level

	Z_{source}	Z_{load}
P3dB	83.04 - j2.44	1.36 - j3.19

Figure 47. Pulsed CW Output Power versus Input Power @ 28 V

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:	DOCUMENT NO): 98ASA10649D	REV: A	
14 LEAD		CASE NUMBER	: 1617–02	27 JUN 2007
IT LEAD	STANDARD: NO	N-JEDEC		

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. MECHANIC, ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NO	T TO SCALE
	DOCUMENT NO): 98ASA10649D	REV: A	
IU-272 WIDE BODY		CASE NUMBER	:: 1617–02	27 JUN 2007
	STANDARD: NO	N-JEDEC		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE . 005 (0. 13) TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

	IN	СН	MIL	LIMETER		INCH		М	LLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
А	.100	.104	2.54	2.64	b	.154	.160	3.91	4.06
A1	.039	.043	0.99	1.09	b1	.010	.016	0.25	0.41
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	0.28
D	.928	.932	23.57	23.67	е	.0	20 BSC	c).51 BSC
D1	.810	BSC	20	.57 BSC	e1	.0	40 BSC	1	.02 BSC
Е	.551	.559	14.00	14.20	e2	.1105 BSC		2.807 BSC	
E1	.353	.357	8.97	9.07	r1	.063	.068	1.6	1.73
E2	.346	.350	8.79	8.89					
F	.025	BSC	0.	64 BSC	aaa	.004			0.10
М	.600		15.24						
Ν	.270		6.86						
© FREESCALE SEMICONDUCTOR, INC. MECHANIC.			MECHANICA	L OUT	LINE	PRINT VERS	SION NO	T TO SCALE	
TITLE:					DOCU	IMENT NO): 98ASA10649	D	REV: A
TO-272 WIDE BODY				CASE	NUMBER	: 1617–02		27 JUN 2007	
14 LEAD				STAN	DARD: NO	N-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANIC/		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASA10650D	REV: A	
IO-270 WIDE BODY		CASE NUMBER	2: 1618–02	19 JUN 2007
	STANDARD: NO	N-JEDEC		