

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

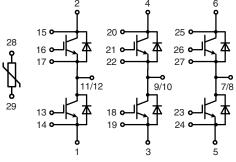
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

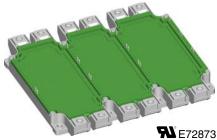
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



IGBT Modules

Sixpack

NPT³ IGBT


22 0

IGBTs				
Symbol	Conditions	Maximum Ratings		
V _{CES}	T _{VJ} = 25°C to 125°C	1700	V	
V _{GES}		± 20	V	
I _{C25}	$T_{\rm C} = 25^{\circ} \text{C}$ $T_{\rm C} = 80^{\circ} \text{C}$	335 235	A A	
RBSOA	$R_g = 5 \Omega$; $T_{VJ} = 125$ °C Clamped inductive load; L = 100 μH	$I_{CM} = 470$ $V_{CEK} \le V_{CES}$	Α	
t _{sc} (SCSOA)	V_{CE} = 1200 V; V_{GE} = ±15 V; R_{G} = 5 Ω ; T_{VJ} = 125°C; non-repetitive; $V_{CEmax} \le V_{CES}$	10	μs	
P _{tot}	$T_C = 25^{\circ}C$	1.4	kW	

Symbol	Conditions $(T_{VJ} = 25)$	Cha °C, unless o min.	aracteri otherwis typ.		
V _{CE(sat)}	$I_{C} = 225 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.5 2.9	2.9 3.4	V V
V _{GE(th)}	$I_{\rm C}$ = 20 mA; $V_{\rm GE} = V_{\rm CE}$	4.5		6.5	V
I _{CES}	$V_{CE} = V_{CES}; V_{GE} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		4.4	0.6	mA mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$			500	nA
t _{d(on)} t _r t _{d(off)} t _{t_r} E _{on} E _{off}	$\begin{cases} \text{Inductive load, } T_{\text{VJ}} = 125^{\circ}\text{C} \\ V_{\text{CE}} = 900 \text{ V; } I_{\text{C}} = 200 \text{ A} \\ V_{\text{GE}} = \pm 15 \text{ V; } R_{\text{G}} = 5 \Omega \end{cases}$		180 110 500 110 66 54		ns ns ns ns mJ mJ
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$ $V_{CE} = 700 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 200 \text{ A}$		22 1.72		nF μC
R _{thJC}				0.085	K/W

= 235 A= 1700 V $V_{CE(sat) typ.} = 2.5 V$

See outline drawing for pin arrangement

Features

€NPT3 IGBT technology €low saturation voltage €low switching losses €square RBSOA, no latch up €high short circuit capability €positive temperature coefficient for easy parallelling €MOS input, voltage controlled €ultra fast free wheeling diodes €solderable pins for PCB mounting €package with copper base plate

Advantages

€space savings €reduced protection circuits €package designed for wave soldering

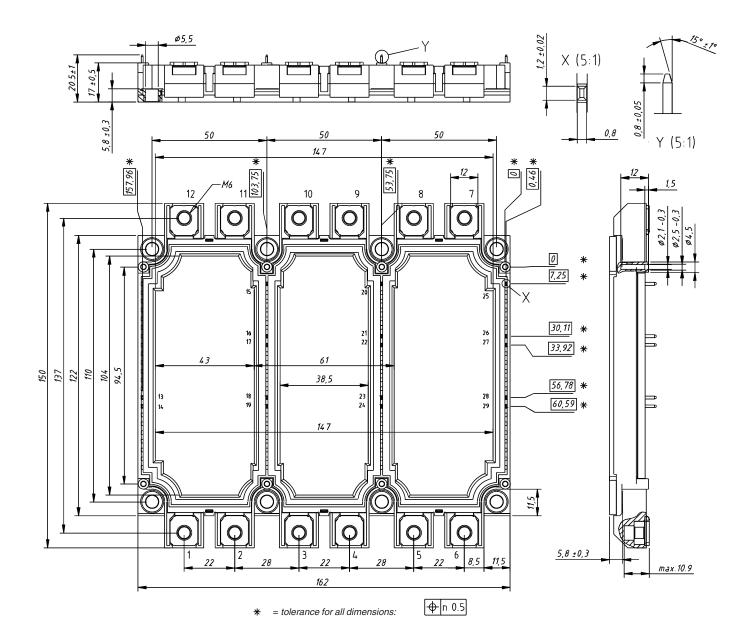
Typical Applications

€AC motor control €AC servo and robot drives €power supplies

Diodes				
Symbol Conditions Maximu			m Ratings	
I _{F80}	$T_C = 80^{\circ}C$	200	Α	
I _{FRM}	t _p = 1 ms	400	Α	
l²t	$T_{VJ} = 125^{\circ}C; t = 10 \text{ ms}; V_{R} = 0 \text{ V}$	5800	A ² s	

Symbol	Conditions	Characteristic Values			
		min.	typ.	max.	
V _F	$I_F = 225 \text{ A}; V_{GE} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$			2.4	V
I _{RM}	$I_F = 225 \text{ A}; \text{ di}_F/\text{dt} = 1600 \text{ A/}\mu\text{s};$ $T_{VJ} = 125^{\circ}\text{C}; V_R = 1150 \text{ V}$		160		Α
R _{thJC}			0.165		K/W

Temperature Sensor NTC					
Symbol	Conditions	Characteristic Value min.∣ typ.∣ max.			lues
R ₂₅ B _{25/50}	T = 25°C	4.75	5.0 3375	5.25	kΩ K


Module				
Symbol	Conditions	Maximum R	atings	
T _{VJ} T _{JM} T _{stg}	operating	-40+125 +150 -40+125	°C °C °C	
V _{ISOL}	$I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}$	2500	٧~	
M _d	Mounting torque (M5) Terminal connection torque (M6)	3 - 6 3 - 6	Nm Nm	

Symbol	Conditions	Characteristic Values		
		min.	typ.	max.
$\mathbf{R}_{term\text{-chip}}^{*)}$	Resistance terminal to chip		0.55	mΩ
d _s d _A	Creepage distance on surface Strike distance in air	12.7 10		mm mm
R _{thCH}	with heatsink compound		0.01	K/W
Weight			900	g

^{*)} $V = V_{\text{CE(sat)}} + 2x \; R_{\text{term-chip}} \cdot I_{\text{C}} \; \text{ resp. } V = V_{\text{F}} + 2x \; R_{\text{term-chip}} \cdot I_{\text{F}}$

Dimensions in mm (1 mm = 0.0394")

