

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

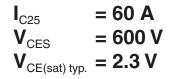
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

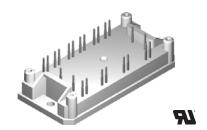
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




IGBT Module

Sixpack

Square RBSOA

IGBTs				
Symbol	Conditions	Maximum Ra	tings	
V _{CES}	T _{vJ} = 25°C to 150°C	600	V	
V _{GES}		± 20	V	
I _{C25} I _{C80}	$T_c = 25$ °C $T_c = 80$ °C	60 41	A A	
I _{CM} V _{CEK}	V_{GE} = ±15 V; R_{G} = 10 Ω ; T_{VJ} = 125°C RBSOA; clamped inductive load; L = 100 μH	80 V _{CES}	Α	
P _{tot}	T _C = 25°C	180	W	

I _{C80}	$T_{\rm C} = 80^{\circ} \rm C$	4	1	Α
I _{CM} V _{CEK}	V_{GE} = ±15 V; R_{G} = 10 Ω; T_{VJ} = 125°C RBSOA; clamped inductive load; L = 100 μH		0	Α
P _{tot}	T _c = 25°C	18	0	W
Symbol	Conditions CI $(T_{VJ} = 25^{\circ}C, \text{ unless})$	naracteri otherwis		
	min.	typ.	max.	
V _{CE(sat)}	$I_{c} = 30 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$	2.3	2.8	V
	. 73 — 128 8	2.0		V

		min.	τyp.	max.	
V _{CE(sat)}	$I_{C} = 30 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.3 2.0	2.8	V
V _{GE(th)}	$I_{\rm C}$ = 0.25 mA; $V_{\rm GE}$ = $V_{\rm CE}$	3		5	V
I _{CES}	$V_{CE} = V_{CES}$; $V_{GE} = 0 \text{ V}$; $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		1.2	0.2	mA mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$			100	nA
$\begin{array}{l} \mathbf{t}_{\text{d(on)}} \\ \mathbf{t}_{\text{r}} \\ \mathbf{t}_{\text{d(off)}} \\ \mathbf{t}_{\text{f}} \\ \mathbf{E}_{\text{on}} \\ \mathbf{E}_{\text{off}} \end{array}$	Inductive load, T_{VJ} = 125°C V_{CE} = 400 V; I_{C} = 30 A V_{GE} = ±15 V; R_{G} = 3 Ω		20 20 130 80 0.6 0.5		ns ns ns ns mJ mJ
C _{ies} Q _{Gon}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$ $V_{CE} = 300 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 30 \text{ A}$		2500 95		pF nC
R _{thJC} R _{thCH}	(per IGBT)		0.25	0.7	K/W K/W

Features

- IGBTs
- low saturation voltage
- fast switching
- short tail current for optimized performance also in resonant circuits
- HiPerFRED™ diode:
- fast reverse recovery
- low operating forward voltage
- low leakage current
- Industry Standard Package
- solderable pins for PCB mounting
- isolated copper base plate
- UL registered E72873

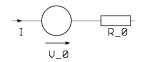
Typical Applications

AC drives

Diodes		
Symbol	Conditions	Maximum Ratings
I _{F25}	$T_{\rm C} = 25^{\circ}{\rm C}$	48 A
I _{F80}	$T_{C} = 80^{\circ}C$	33 A

Symbol	Conditions	Characteristic Values			
		min.	typ.	max.	
V _E	$I_{E} = 30 \text{ A}; V_{GE} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$		2.2	2.6	V
	$T_{VJ} = 125$ °C		1.7		V
I _{RM}	$\int I_F = 30 \text{ A}; \text{ di}_F/\text{dt} = -400 \text{ A/µs}; T_{V,I} = 100^{\circ}\text{C}$		5		Α
t _{rr}	$\begin{cases} I_F = 30 \text{ A; } di_F/dt = -400 \text{ A/µs; } T_{VJ} = 100^{\circ}\text{C} \\ V_R = 300 \text{ V; } V_{GE} = 0 \text{ V} \end{cases}$		65		ns
R _{thJC}	(per Diode)			0.9	K/W
R _{thCH}			0.3		K/W

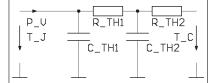
Temperature Sensor NTC


Module

Symbol	Conditions	Ch	Characteristic Values		
		min.	typ.	max.	
R ₂₅ B _{25/85}	T = 25°C	4.45	4.7 3510	5.0	kΩ K

module					
Symbol	Conditions	Maximum R	ximum Ratings		
T _{VJ} T _{VJM} T _{stg}	operating	-40+125 -40+150 -40+125	°C °C °C		
V _{ISOL}	$I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}$	2500	V~		
M _d	Mounting torque (M4)	2.0 - 2.2	Nm		

Equivalent Circuits for Simulation

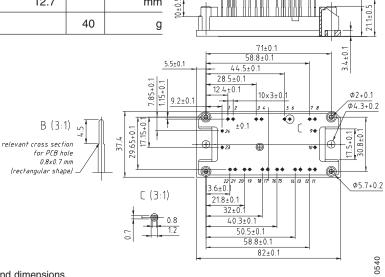

Conduction

IGBT (typ. at $V_{GE} = 15 \text{ V}$; $T_{J} = 125^{\circ}\text{C}$) $V_{0} = 1.1 \text{ V}$; $R_{0} = 21.5 \text{ m}\Omega$

Free Wheeling Diode (typ. at $T_J = 125$ °C) $V_0 = 1.20 \ V; \ R_0 = 19 \ m\Omega$

Thermal Response

IGBT (typ.)


 C_{th1} = tbd J/K; R_{th1} = tbd K/W C_{th2} = tbd J/K; R_{th2} = tbd K/W

Free Wheeling Diode (typ.)

 $C_{th1} = tbd J/K$; $R_{th1} = tbd K/W$ $C_{th2} = tbd J/K$; $R_{th2} = tbd K/W$

Dimensions in mm (1 mm = 0.0394")

IXYS reserves the right to change limits, test conditions and dimensions.

17.1±0.3