Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## **IGBT Module** Sixpack Short Circuit SOA Capability Square RBSOA Preliminary data Part name (Marking on product) MWI 80-12T6K 10, 23 0 11, 12 15, 16 19, 20 19, 24 0 $I_{C25} = 80 A$ $V_{CES} = 1200 V$ $V_{CE(sat) typ.} = 2.0 V$ Pin configuration see outlines. #### Features: - Trench IGBTs - low saturation voltage - positive temperature coefficient for easy paralleling - fast switching - short tail current for optimized performance also in resonant circuits - HiPerFRED™ diode: - fast reverse recovery - low operating forward voltage - low leakage current - Industry Standard Package - solderable pins for PCB mounting - isolated copper base plate #### Application: - AC drives - UPS - Welding ## Package: - UL registered - Industry standard E1-pack | | | | | Ratir | ngs | | |--|---|---|-------|-----------------------------------|------------|----------------------------------| | Symbol | Definitions | Conditions | min. | typ. | max. | Unit | | V _{CES} | collector emitter voltage | T _{vJ} = 25°C to 150° | С | | 1200 | ٧ | | V _{GES} | max. DC gate voltage
max. transient collector gate voltage | continuous
transient | | | ±20
±30 | V | | I _{C25}
I _{C80} | collector current | $T_{\rm C} = 25^{\circ}$ $T_{\rm C} = 80^{\circ}$ | | | 80
56 | A | | P _{tot} | total power dissipation | $T_{\rm C} = 25^{\circ}$ | 2 | | 270 | W | | V _{CE(sat)} | collector emitter saturation voltage | $I_{C} = 50 \text{ A}; V_{GE} = 15 \text{ V}$ $T_{VJ} = 25^{\circ} 0$ $T_{VJ} = 125^{\circ} 0$ | | 2.0
2.3 | 2.4 | V
V | | $V_{\text{GE(th)}}$ | gate emitter threshold voltage | $I_{\rm C} = 2 \text{ mA}; V_{\rm GE} = V_{\rm CE}$ $T_{\rm VJ} = 25^{\circ}$ | C 4.5 | | 6.5 | V | | I _{CES} | collector emitter leakage current | $V_{CE} = V_{CES}; V_{GE} = 0 \text{ V}$ $T_{VJ} = 25^{\circ}0$ $T_{VJ} = 125^{\circ}0$ | | 0.8 | 1 | mA
mA | | I _{GES} | gate emitter leakage current | $V_{CE} = 0 \text{ V}; \ V_{GE} = \pm 20 \text{ V}$ | | | 400 | nA | | C _{ies} | input capacitance | $V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$ | | 3600 | | pF | | $Q_{G(on)}$ | total gate charge | $V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 50 \text{ A}$ | | 470 | | nC | | $\begin{aligned} & \mathbf{t}_{\mathrm{d(on)}} \\ & \mathbf{t}_{\mathrm{r}} \\ & \mathbf{t}_{\mathrm{d(off)}} \\ & \mathbf{t}_{\mathrm{f}} \\ & \mathbf{E}_{\mathrm{on}} \\ & \mathbf{E}_{\mathrm{off}} \end{aligned}$ | turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse | inductive load $V_{CE} = 600 \text{ V; } I_C = 50 \text{ A} $ $V_{GE} = \pm 15 \text{ V; } R_G = 18 \Omega$ | 0 | 90
50
520
90
5
6.5 | | ns
ns
ns
ns
mJ
mJ | | I _{CM} | reverse bias safe operating area | RBSOA; $V_{GE} = \pm 15 \text{ V}$; $R_G = 18 \Omega$
$L = 100 \mu\text{H}$; clamped induct. load $T_{VJ} = 125^{\circ}\text{G}$
$V_{CEmax} = V_{CES} - L_S \cdot \text{di/dt}$ | 0 | 100 | | A | | t _{sc}
(SCSOA) | short circuit safe operating area | $V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V};$ $T_{VJ} = 125^{\circ}$ $R_{G} = 18 \Omega;$ non-repetitive | C | 10 | | μs | | R _{thJC} | thermal resistance junction to case | (per IGBT) | | | 0.46 | K/W | | R _{thCH} | thermal resistance case to heatsink | (per IGBT) | | 0.2 | | K/W | | Diodes | | | | | | |------------------|---------------------------------|------------|---------------------------------|------------|--------| | Symbol | Definitions | Conditions | | Maximum Ra | atings | | V _{RRM} | max. repetitive reverse voltage | | | 1200 | V | | I _{F25} | forward current | | $T_c = 25^{\circ}C$ | 80 | Α | | I _{F80} | | | $T_{\rm C} = 80^{\circ}{\rm C}$ | 51 | Α | | Symbol | Conditions | | | CI | naracte | ristic Values | | |------------------------------------|---|---|---|------|------------|---------------|---------| | | | | | min. | typ. | max. | | | V _F | forward voltage | I _F = 50 A | $T_{VJ} = 25^{\circ}C$
$T_{VJ} = 125^{\circ}C$ | | 2.3
1.6 | 2.6 | V | | I _{RM}
t _{rr} | max. reverse recovery current reverse recovery time | $V_{R} = 600 \text{ V}; I_{F} = 50 \text{ A}$
$di_{F}/dt = -600 \text{ A}/\mu\text{s}$ | T _{VJ} = 100°C | | 35
200 | | A
ns | | R_{thJC} | thermal resistance junction to case | (per diode) | $T_{VJ} = 25^{\circ}C$ | | | 0.65 | K/W | | R _{thCH} | thermal resistance case to heatsink | (per diode) | | | 0.25 | | K/W | | Tempera | ture Sensor NTC | | | | | | |--------------------|-----------------|---------------------|------|-------|------|------| | | | | | Ratir | ngs | | | Symbol | Definitions | Conditions | min. | typ. | max. | Unit | | R ₂₅ | resistance | $T_c = 25^{\circ}C$ | 4.45 | 4.7 | 5.0 | kΩ | | B _{25/85} | | • | | 3510 | | K | | Module | | | | | | | | |-------------------|-----------------------------------|---|---------|------|------|------|--| | | | | Ratings | | | | | | Symbol | Definitions | Conditions | min. | typ. | max. | Unit | | | T_{VJ} | operating temperature | | -40 | | 125 | °C | | | T_{VJM} | max. virtual junction temperature | | | | 150 | °C | | | T _{stg} | storage temperature | | -40 | | 125 | °C | | | V _{ISOL} | isolation voltage | $I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}$ | | | 2500 | ٧~ | | | M _d | mounting torque | (M4) | 2.0 | | 2.2 | Nm | | | d _s | creep distance on surface | | 12.7 | | | mm | | | d _A | strike distance through air | | 12.7 | | | mm | | | Weight | | | | 40 | | g | | ## **Equivalent Circuits for Simulation** ## **Ratings** | Symbol | Definitions | Conditions | min. typ. | max. | Unit | |----------------|---------------------|-------------------------|-----------|------|------| | V_{0} | IGBT | $T_{vJ} = 125^{\circ}C$ | tbd | | V | | R_0 | | | tbd | | mΩ | | V _o | free wheeling diode | T _{vJ} = 125°C | 1.5 | | V | | R_0 | | | 6 | | mΩ | **Outline Drawing** Dimensions in mm (1 mm = 0.0394") ### **Product Marking** | Ordering | Part Name | Marking on Product | Delivering Mode | Base Qty | Ordering Code | |----------|--------------|--------------------|-----------------|----------|---------------| | Standard | MWI 80-12T6K | MWI80-12T6K | Box | 10 | 500 159 |