

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

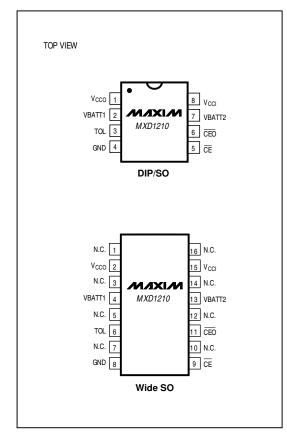
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


General Description

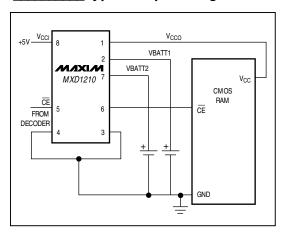
The MXD1210 nonvolatile RAM controller is a very low-power CMOS circuit that converts standard (volatile) CMOS RAM into nonvolatile memory. It also continually monitors the power supply to provide RAM write protection when power to the RAM is in a marginal (out-of-tolerance) condition. When the power supply begins to fail, the RAM is write protected, and the device switches to battery-backup mode.

Applications

μP Systems Computers Embedded Systems

Pin Configurations

Features


- **♦** Battery Backup
- **♦ Memory Write Protection**
- ♦ 230µA Operating-Mode Quiescent Current
- ◆ 2nA Backup-Mode Quiescent Current
- ♦ Battery Freshness Seal
- **♦ Optional Redundant Battery**
- ♦ Low Forward-Voltage Drop on V_{CC} Supply Switch
- ♦ 5% or 10% Power-Fail Detection Options
- **♦ Tests Battery Condition During Power-Up**
- ♦ 8-Pin SO Available

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MXD1210CPA	0°C to +70°C	8 Plastic DIP
MXD1210CSA	0°C to +70°C	8 SO
MXD1210CWE	0°C to +70°C	16 Wide SO
MXD1210C/D	0°C to +70°C	Dice*
MXD1210EPA	-40°C to +85°C	8 Plastic DIP
MXD1210ESA	-40°C to +85°C	8 SO
MXD1210EWE	-40°C to +85°C	16 Wide SO
MXD1210MJA	-55°C to +125°C	8 CERDIP

*Contact factory for dice specifications.

__Typical Operating Circuit

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CCI} to GND	0.3V, +7V
	0.3V, +7V
VBATT2 to GND	0.3V, +7V
V _{CCO} to GND	0.3V, V _S + 0.3V
(\	V_S = greater of V_{CCI} , VBATT1, VBATT2)
Digital Input and Output Vo	oltages to GND 0.3V. V _{CCI} + 0.3V

Continuous Power Dissipation (TA = +70°C)
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)727mW
8-Pin SO (derate 5.88mW/°C above +70°C)471mW
16-Pin Wide SO (derate 9.52mW/°C above +70°C)762mW
8-Pin CERDIP (derate 8.00mW/°C above +70°C)640mW
Operating Temperature Ranges
MXD1210C0°C to +70°C
MXD1210E
MXD1210MJA55°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10sec) +300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RECOMMENDED OPERATING CONDITIONS						
Supply Voltage V _{CCI}		TOL = GND	4.75		5.50	٧
	00.	TOL = V _{CCO}	4.50		5.50	
Input High Voltage	ViH		2.2			٧
Input Low Voltage	V _{IL}				0.8	٧
Battery Voltage (Note 1)	VBATT1 VBATT2	1 or 2 batteries	2.0		4.0	V

ELECTRICAL CHARACTERISTICS

 $(V_{CCI} = +4.75V \text{ to } +5.5V, \text{ TOL} = \text{GND}; \text{ or } V_{CCI} = +4.5V \text{ to } +5.5V, \text{ TOL} = V_{CCO}; \text{ TA} = \text{T}_{MIN} \text{ to } \text{T}_{MAX}; \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
NORMAL SUPPLY MODE, TOL	= V _{CCO}	-1		'			
Supply Current	Icci	V _{CCO} , CEO open, VBATT1 = VBATT2 = 3	3V		0.23	0.5	mA
			MXD1210C	V _{CCI} - 0.	20		
Output Supply Voltage	Vcco	ICCO1 = 80mA	MXD1210E	Vccı - 0.	21		V
			V _{CCI} - 0.	25			
		V V < 0.0V	MXD1210C			80	
Output Supply Current	Icco	V _{CCI} - V _{CCO} ≤ 0.2V (Note 2)	MXD1210E		0.23	75	mA
			MXD1210M		0.23	65	
Input Leakage Current	IIL					±1.0	μΑ
Output Leakage Current	loL					±1.0	μΑ
High-Level Output Voltage	VoH	I _{OH} = -1mA		2.4			V
Low-Level Output Voltage	V _{OL}	I _{OL} = 4mA				0.4	V
Vacuatrin Point	Voots	TOL = GND		4.50		4.74	V
V _{CCI} Trip Point	V _{CCTP}	TOL = V _{CCO}	-	4.25		4.49	V

ELECTRICAL CHARACTERISTICS

 $(V_{CCI} < VBATT; positive edge rate at VBATT1, VBATT2 > 0.1 V/µs, T_A = T_{MIN} to T_{MAX}; unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
BATTERY-BACKUP MODE							
Quiescent Current (Note 1)	lo	V _{CCO} , CEO open	MXD1210C/E		2	100	nA
Quiescent Current (Note 1)	IBATT	VCCI = 0V	MXD1210M			5	μΑ
Output Supply Current (Notes 3, 4)	ICCO2	VBATT - V _{CCO} ≤ 0.2V				300	μΑ
CEO Output Voltage	VO	Output open		VBATT - 0	.2		V

ELECTRICAL CHARACTERISTICS

 $(T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT/OUTPUT CAPACITANCE	(Note 5)					
Input Capacitance	C _{IN}				5	pF
Output Capacitance	Cout				7	pF

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
		5 44 6	MXD1210C	5	10	20	
CE Propagation Delay	tPD	$R_L = 1k\Omega$, $C_L = 50pF$	MXD1210E	5	10	22	ns
		OL = dop!	MXD1210M	5	10	25	
CE High to Power-Fail (Note 5)	tpF				0		ns

TIMING CHARACTERISTICS

 $(V_{CCI} < +4.75V \ to \ +5.5V, \ TOL = \ GND; \ or \ V_{CCI} < +4.5V \ , \ TOL = V_{CCO}; \ T_A = T_{MIN} \ to \ T_{MAX}; \ unless \ otherwise \ noted.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Recovery at Power-Up	tREC			5	20	ms
V _{CC} Slew-Rate Power-Down	tF	To out-of-tolerance condition	300			ше
VCC Siew-nate Fower-Down	tFB	Tolerance to battery power	10			μs
V _{CC} Slew-Rate Power-Up	tR		0			μs
CE Pulse Width (Note 6)	tCE				1.5	μs

Note 1: Only one battery input is required. Unused battery inputs must be grounded.

Note 2: ICCO1 is the maximum average load current the MXD1210 can supply to the memories.

Note 3: ICCO2 is the maximum average load current the MXD1210 can supply to the memories in battery-backup mode.

Note 4: CEO can sustain leakage current only in battery-backup mode.

Note 5: Guaranteed by design.

Note 6: tcE max must be met to ensure data integrity on power loss.

_Pin Description

	PIN		FUNCTION
8-PIN DIP/SO	16-PIN WIDE SO	NAME	FONCTION
1	2	Vcco	Backed-up supply to RAM
2	4	VBATT1	Battery 1 positive connection
3	6	TOL	Tolerance select pin
4	8	GND	Ground
5	9	CE	Chip-enable input
6	11	CEO	Chip-enable output
7	13	VBATT2	Battery 2 positive connection
8	15	Vccı	5V power supply to chip
-	1, 3, 5, 7 10, 12, 14, 16	N.C.	No connect, not internally connected

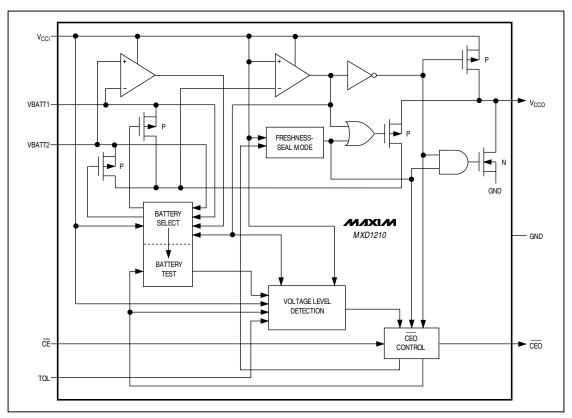


Figure 1. Block Diagram

4 ______/N/XI/N

Detailed Description

Main Functions

The MXD1210 executes five main functions to perform reliable RAM operation and battery backup (see *Typical Operating Circuit* and Figure 1):

- RAM Power-Supply Switch: The switch directs power to the RAM from the incoming supply or from the selected battery, whichever is at the greater voltage. The switch control uses the same criterion to direct power to MXD1210 internal circuitry.
- Power-Failure Detection: The write-protection function is enabled when a power failure is detected.
 The power-failure detection range depends on the state of the TOL pin as follows:

CONDITION	V _{CCTP} RANGE (V)
TOL = GND	4.75 to 4.50
TOL = Vcco	4.50 to 4.25

Power-failure detection is independent of the batterybackup function and precedes it sequentially as the power-supply voltage drops during a typical power failure

- 3. Write Protection: This holds the chip-enable output (CEO) to within 0.2V of V_{CCI} or of the selected battery, whichever is greater. If the chip-enable input (CE) is low (active) when power failure is detected, then CEO is held low until CE is brought high, at which time CEO is gated high for the duration of the power failure. The preceding sequence completes the current RD/WR cycle, preventing data corruption if the RAM access is a WR cycle.
- 4. Battery Redundancy: A second battery is optional. When two batteries are connected, the stronger battery is selected to provide RAM backup and to power the MXD1210. The battery-selection circuitry remains active while in the battery-backup mode, selecting the stronger battery and isolating the weaker one. The battery-selection activity is transparent to the user and the system. If only one battery is connected, the second battery input should be grounded.

5. Battery-Status Warning: This notifies the system when the stronger of the two batteries measures ≤ 2.0V. Each time the MXD1210 is repowered (VCCI > VCCTP) after detecting a power failure, the battery voltage is measured. If the battery in use is low, following the MXD1210 recovery period, the device issues a warning to the system by inhibiting the second memory cycle. The sequence is as follows:

First access: read memory location n, loc(n) = xSecond access: write memory location n,

loc(n) = complement(x)

Third access: read memory location n, loc (n) = ? If the third access (read) is complement (x), then the battery is good; otherwise, the battery is not good. Return to loc(n) = x following the test sequence.

Freshness-Seal Mode

The freshness-seal mode relates to battery longevity during storage rather than directly to battery backup. This mode is activated when the first battery is connected, and is defeated when the voltage at VCCI first exceeds VCCTP. In the freshness-seal mode, both batteries are isolated from the system; that is, no current is drained from either battery, and the RAM is not powered by either battery. This means that batteries can be installed and the system can be held in inventory without battery discharge. The positive edge rate at VBATT1 and VBATT2 should exceed $0.1 \text{V}/\mu\text{s}$. The batteries will maintain their full shelf-life while installed in the system.

Battery Backup

The *Typical Operating Circuit* shows the MXD1210 connected in order to write protect the RAM when V_{CC} is less than 4.75V, and to provide battery backup to the supply.

MXD1210

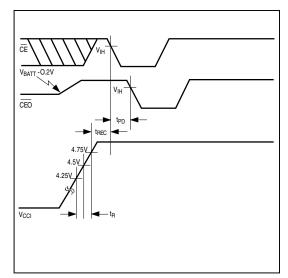
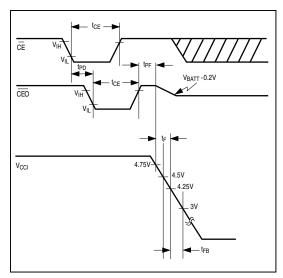
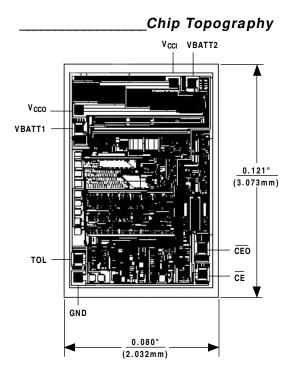
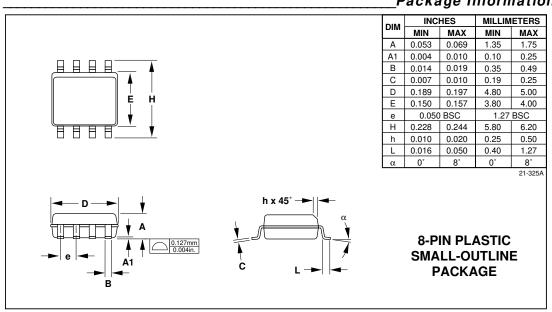
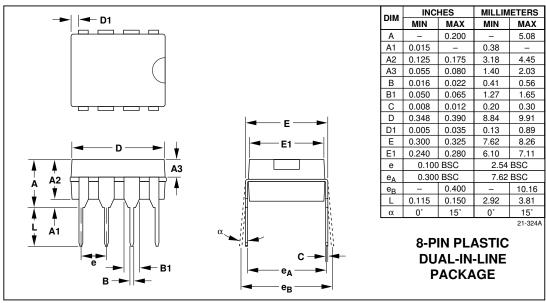


Figure 2. Power-Up Timing Diagram


Figure 3. Power-Down Timing Diagram



TRANSISTOR COUNT: 1436;

LEAVE SUBSTRATE UNCONNECTED.

_Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1996 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.