

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MXO45 & MXO45HS HCMOS/TTL Clock Oscillators

Features

- Standard 14-Pin or 8-Pin Metal DIP Packages
- Fundamental and 3rd Overtone Crystal Designs
- Low Phase Jitter Performance
- Frequency Range 1 200MHz
- +5.0V Operation
- Output Enable Option Available
- Three Approved Packing Methods.

Applications

- Computers & Peripherals
- Storage Area Networking
- Broadband Access
- Microcontrollers/FPGAs
- Networking Equipment
- Ethernet/Gigabit Ethernet
- Fiber Channel
- Test and Measurement

Description

CTS MXO45 and MXO45HS are legacy thru-hole clock oscillators that offer a low cost design supporting older HCMOS/TTL applications. MXO45/MXO45HS is not recommended for new design activity, but is available to support existing applications developed for the full and half-size metal DIP packages.

Ordering Information

Model		Package Type/ Output Enable		Frequency Stability		Temperature Range		Frequency Code [MHz]
МХО		45	-	3		С	-	XXXMXXXXXX
		<u> </u>				—		
	Code	Package/Enable			Code	Temp. Range	-	
	45	14-Pin DIP/STD Output [no enable]			С	-20°C to +70°C	-	
	45T	14-Pin DIP/Output Enable			Т	-40°C to +85°C	-	
_	45HS	8-Pin DIP/STD Output [no enable]					-	
	45HST	8-Pin DIP/Output Enable						
			Code	_ Stability	-		Code	Frequency
			6	±20ppm ¹	_		Dl	
			5	±25ppm	_		Prod	uct Frequency Code
			3	±50ppm	_			
			2	±100ppm	_			

Notes:

- 1] Consult factory for availability of 6C Stability/Temperature combination. The 6I combination is not available.
- 2] Frequency is recorded with only 1, 2 or 3 leading significant digits before and 4 6 significant digits [including zeroes] after the "M". [Ex. 3M579545 (3.579545MHz), 14M31818 (14.31818MHz), 125M0000 (125MHz)]

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

DOC# 008-0258-0 Rev. G WWW.ctscorp.com Page 1 of 5

HCMOS/TTL Clock Oscillators

Electrical Specifications

Operating Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Maximum Supply Voltage	V _{CC}	-	-0.5	-	7.0	V
Supply Voltage	V _{CC}	±10%	4.5	5.0	5.5	V
Supply Current		Freq Range [tested load noted for TYP values.]				
		1.0MHz to 20MHz $[C_L = 50pF]$	-	10	26	
$20.001MHz \text{ to } 40MHz [C_L = 30pF]$		-	- 20	40		
	I _{CC}	40.001MHz to 80MHz [CL = 30pF]	-	30	60	mA
		80.001MHz to 125MHz $[C_L = 15pF]$	-	40	70	
		125.001MHz to 200MHz [C _L = 15pF]	-	55	80	
Operating Temperature	т		-20	+25	+70 °C	
Operating remperature	T _A	-	-40	TZJ	+85	
Storage Temperature	T _{STG}	T _{STG} 40 -		-	+100	°C

Frequency Stability

PARAMETER SYMBOL		CONDITIONS	MIN	TYP	MAX	UNIT
Frequency Range	f _O	-	1 - 200		MHz	
Frequency Stability [Note 1]	Δf/f _O	-	20	20, 25, 50 or 100		±ppm
Aging	$\Delta f/f_{25}$	First Year @ +25°C, nominal V _{CC}	-5	±3	5	ppm
1.1 Inclusive of initial tolerance at ti	me of shipment changes	in supply voltage load temperature and 1st year a	nina			

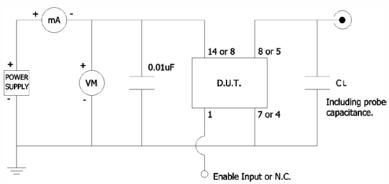
Output Parameters

PARAMETER SYMBOL CONDITIONS		MIN	TYP	MAX	UNIT		
Output Type	-	-		HCMOS		-	
Output Load		1.0MHz to 50MHz [CMOS Load]	-	15	50		
	6	50.001MHz to 80MHz [CMOS Load]	-	15	30	рF	
	C_L	80.001MHz to 200MHz [CMOS Load]	-	15	15		
		1.0MHz to 200MHz [TTL Load]	-	-	10	TTL	
	V	CMOS Load	0.9V _{CC}	-	-		
Outrut Valtaga Lavala	V_{OH}	10TTL Load	2.4	-	-	V	
Output Voltage Levels	\/	CMOS Load	-	-	$0.1V_{CC}$	V	
	V _{OL}	10TTL Load	-	-	0.4		
Output Current Lovels	I _{OH}	$V_{OH} = 3.9V, V_{CC} = 4.5V$	-	-	-16	mA	
Output Current Levels	I _{OL}	$V_{OL} = 0.4V$, $V_{CC} = 4.5V$	-	-	16	MA	
Output Duty Cycle	SYM	@ 50% Level	45	-	55	%	
Rise and Fall Time	@ 1	.0%/90% Levels [tested load noted for TYP valu	ues.]				
		1.0MHz to 20MHz $[C_L = 50pF]$	-	8	10		
	T T	20.001MHz to 80MHz $[C_L = 30pF]$	-	5	8		
	T_R , T_F	80.001MHz to 125MHz [CL = 15pF]	-	2.5	5	ns	
		125.001MHz to 200MHz [C _L = 15pF]	-	-	2		
Start Up Time	T _S	Application of V_{CC} , $C_L = 15pF$	-	5	10	ms	

HCMOS/TTL Clock Oscillators

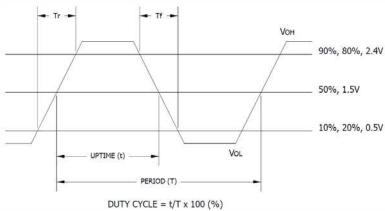
Electrical Specifications

Output Parameters


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
Enable Function							
Enable Input Voltage	V_{IH}	Pin 1 Logic '1', Output Enabled	2.0	-	-	V	
Disable Input Voltage	V_{IL}	Pin 1 Logic '0', Output Disabled	-	-	0.8	V	
Disable Current	I _{IL}	Pin 1 Logic '0', Output Disabled	-	-	10	uA	
Enable Time	T_PLZ	Pin 1 Logic '1', Output Enabled	-	-	100	ns	
Phase Jitter, RMS	tjrms	Bandwidth 12 kHz - 20 MHz	-	0.7	1	ps	
Period Jitter, RMS	pjrms	-	-	-	5	ps	
Period Jitter, pk-pk	pjpk-pk	-	-	-	50	ps	

Enable Truth Table

Pin 1	Pin 8 or Pin 5
Logic '1'	Output
Open	Output
Logic '0'	High Imp.


Test Circuit

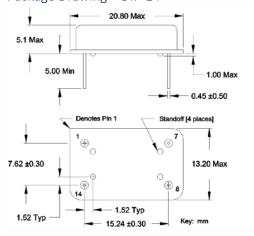
HCMOS

Output Waveform

DOC# 008-0258-0 Rev. G

www.ctscorp.com

Page 3 of 5

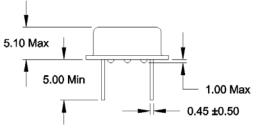


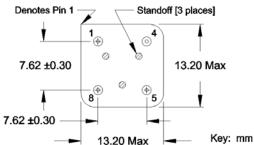
MXO45 & MXO45HS

HCMOS/TTL Clock Oscillators

Mechanical Specifications

Package Drawing - DIP-14




Marking Information

- Model Name: DIP-14 – MXO45 or MXO45T DIP-8 – MXO45HS or MXO45HST
- XXXMXXXXXX Frequency is recorded with only 1, 2 or 3 leading significant digits before and 4 - 6 significant digits [including zeroes] after the "M". [Ex. 3M579545 (3.579545MHz), 14M31818 (14.31818MHz), 125M0000 (125MHz)]
- 3. ST Frequency Stability/Temperature Code. [Refer to Ordering Information]
- 4. YYWW Date Code; YY year, WW week.
- 5. ** Manufacturing Site Code.

Package Drawing - DIP-8

Notes

- 1. JEDEC termination code (e1). Lead finish is tinsilver-copper [SnAgCu].
- 2. Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. Hand soldering conditions; solder iron temperature +350°C maximum, 10 seconds.
- 4. MSL = 1.

Pin Assignments

Pin	Symbol	Function
1	EOH	Enable
7 or 4	GND	Circuit & Package Ground
8 or 5	Output	RF Output
14 or 8 V _{cc}		Supply Voltage

MXO45 & MXO45HS

HCMOS/TTL Clock Oscillators

Packaging - CTS Approved Methods

Anti-Static Plastic Trays

Typical packing format:

- 1. 50pcs. per plastic tray.
 - Tray size is approximately 180mm x 136mm x 18mm [LxWxH].
- 2. 2 trays per anti-static bag [100pcs.] or 10 trays per anti-static bag [500pcs.] Bag height for 10 trays is approximately 175mm.
- 3. One anti-static bag per inner cardboard carton.
- 4. Master-pack multiple inner cartons in a larger outer cardboard carton.
 - 8 inner cartons [10 trays per carton] per outer carton, is approximately 460mm x 380mm x 400mm [LxWxH].

Anti-Static Foam in Cardboard Carton

Typical packing format:

- 1. 50pcs. per anti-static foam layer.
- 2. 2 layers of anti-static foam [100pcs.] per inner cardboard carton. Carton size is approximately 170mm x 120mm x 45mm [LxWxH].
- 3. A foam sheet layer is placed as a buffer on top of each layer containing oscillators.
- 4. Master-pack multiple inner cartons in a larger outer cardboard carton.20 inner cartons [100pcs. per carton] per outer carton, is approximately 550mm x 350mm x 180mm [LxWxH].

Anti-Static Plastic Tubes

Typical packing format:

- 1. 10pcs. per plastic tube Full-Size package. 15pcs. per plastic tube – Half-Size package.
- Plastic tubes are master packed in cardboard carton.
 Carton is approximately 35mm x 35mm x 20mm [LxWxH].