
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

www.keil.com

Getting Started

For ARM Processor-Based Microcontrollers

Building Applications with RL-ARM

2 Preface

Information in this document is subject to change without notice and does not

represent a commitment on the part of the manufacturer. The software described

in this document is furnished under license agreement or nondisclosure

agreement and may be used or copied only in accordance with the terms of the

agreement. It is against the law to copy the software on any medium except as

specifically allowed in the license or nondisclosure agreement. The purchaser

may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or information storage and

retrieval systems, for any purpose other than for the purchaser’s personal use,

without written permission.

Copyright © 1997-2009 ARM Ltd and ARM Germany GmbH.

All rights reserved.

Keil, the Keil Software Logo, µVision, MDK-ARM, RL-ARM, ULINK, and

Device Database are trademarks or registered trademarks of ARM Ltd, and

ARM Inc.

Microsoft
®
 and Windows

™
 are trademarks or registered trademarks of Microsoft

Corporation.

NOTE

This manual assumes that you are familiar with Microsoft
®
 Windows

™
 and the

hardware and instruction set of the ARM7
™

 and ARM9
™

 processor families or

the Cortex
™

-M series processors. In addition, basic knowledge of µVision
®
4 is

anticipated.

Every effort was made to ensure accuracy in this manual and to give appropriate

credit to persons, companies, and trademarks referenced herein.

Getting Started: Building Applications with RL-ARM 3

Preface

This manual is an introduction to the Real-Time Library (RL-ARM
™

), which is

a group of tightly coupled libraries designed to solve the real-time and

communication challenges of embedded systems based on ARM processor-based

microcontroller devices.

Using This Book

This book comes with a number of practical exercises that demonstrate the key

operating principles of the RL-ARM. To use the exercises you will need to have

both the Keil™
 Microcontroller Development Kit (MDK-ARM

™
) installed and

the Real-Time Library (RL-ARM). If you are new to the MDK-ARM, there is a

separate Getting Started guide, which will introduce you to the key features. The

online documentation for the MDK-ARM, including the Getting Started guide, is

located at www.keil.com/support/man_arm.htm.

Alongside the standard RL-ARM examples, this book includes a number of

additional examples. These examples present the key principles outlined in this

book using the minimal amount of code. Each example is designed to be built

with the evaluation version of the MDK-ARM. If this is not possible, the

example is prebuilt so that it can be downloaded and run on a suitable evaluation

board.

This book is useful for students, beginners, advanced and experienced developers

alike.

However, it is assumed that you have a basic knowledge of how to use

microcontrollers and that you are familiar with the instruction set of your

preferred microcontroller. In addition, it is helpful to have basic knowledge on

how to use the µVision Debugger & IDE.

4 Preface

Chapter Overview

“Chapter 1. Introduction”, provides a product overview, remarks referring to

the installation requirements, and shows how to get support from the Keil

technical support team.

“Chapter 2. Developing with an RTOS”, describes the advantages of the RTX,

explains the RTX kernel, and addresses RTOS features, such as tasks,

semaphores, mutexes, time management, and priority schemes.

“Chapter 3. RL-Flash Introduction”, describes the features of the embedded

file system, how to set it up, configuration options, standard routines used to

maintain the file system, and how to adapt flash algorithms.

“Chapter 4. RL-TCPnet Introduction”, describes the network model, TCP key

features, communication protocols, and how to configure an ARM processor-

based microcontroller to function with HTTP, Telnet, FTP, SMTP, or DNS

applications.

“Chapter 5. RL-USB Introduction”, describes the USB key features, the

physical and logical network, pipes and endpoints, the device communication

descriptors, and the supported interfaces and their classes.

“Chapter 6. RL-CAN Introduction”, describes the CAN key concepts, the

message frame, and the programming API implemented.

Getting Started: Building Applications with RL-ARM 5

Document Conventions

Examples Description

README.TXT
1
 Bold capital text is used to highlight the names of executable programs,

data files, source files, environment variables, and commands that you
can enter at the command prompt. This text usually represents
commands that you must type in literally. For example:

 ARMCC.EXE DIR LX51.EXE

Courier Text in this typeface is used to represent information that is displayed on
the screen or is printed out on the printer

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents required information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name

Occasionally, italics are used to emphasize words in the text.

Elements that repeat… Ellipses (…) are used to indicate an item that may be repeated

Omitted code
 .
 .
 .

Vertical ellipses are used in source code listings to indicate that a
fragment of the program has been omitted. For example:
void main (void) {
.
.
.
while (1);

 «Optional Items» Double brackets indicate optional items in command lines and input
fields. For example:

C51 TEST.C PRINT «filename»

{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a
selection of items. The braces enclose all of the choices and the vertical
bars separate the choices. Exactly one item in the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press F1 for help”.

Underlined text Text that is underlined highlights web pages. In some cases, it marks
email addresses.

1
It is not required to enter commands using all capital letters.

6 Content

Content

Preface ... 3

Document Conventions .. 5

Content .. 6

Chapter 1. Introduction .. 10

RL-ARM Overview ... 10

RTX RTOS .. 11

Flash File System ... 11

TCP/IP ... 12

USB .. 12

CAN ... 13

Installation ... 14

Product Folder Structure .. 14

Last-Minute Changes ... 15

Requesting Assistance ... 15

Chapter 2. Developing With an RTOS ... 16

Getting Started ... 16

Setting-Up a Project ... 17

RTX Kernel ... 19

Tasks .. 19

Starting RTX .. 21

Creating Tasks ... 22

Task Management .. 24

Multiple Instances .. 24

Time Management ... 24

Time Delay .. 25

Periodic Task Execution .. 26

Virtual Timer ... 26

Idle Demon .. 27

Inter-Task Communication .. 28

Events .. 28

RTOS Interrupt Handling .. 29

Task Priority Scheme ... 31

Semaphores .. 32

Using Semaphores ... 34

Signaling .. 34

Multiplex .. 34

Getting Started: Building Applications with RL-ARM 7

Rendezvous .. 35

Barrier Turnstile ... 36

Semaphore Caveats .. 38

Mutex ... 38

Mutex Caveats ... 39

Mailbox .. 39

Task Lock and Unlock ... 43

Configuration ... 43

Task Definitions ... 44

System Timer Configuration ... 45

Round Robin Task Switching .. 45

Scheduling Options .. 45

Pre-emptive Scheduling ... 46

Round Robin Scheduling ... 46

Round Robin Pre-emptive Scheduling .. 47

Co-operative Multitasking ... 47

Priority Inversion ... 47

Chapter 3. RL-Flash Introduction .. 49

Getting Started ... 49

Setting-Up the File System .. 50

File I/O Routines .. 52

Volume Maintenance Routines .. 54

Flash Drive Configuration ... 56

Adapting Flash Algorithms for RL-Flash .. 58

MultiMedia Cards .. 60

Serial Flash .. 62

Chapter 4. RL-TCPnet Introduction .. 63

TCP/IP – Key Concepts ... 63

Network Model .. 63

Ethernet and IEEE 802.3 ... 65

TCP/IP Datagrams ... 65

Internet Protocol .. 65

Address Resolution Protocol ... 66

Subnet Mask .. 67

Dynamic Host Control Protocol DHCP ... 68

Internet Control Message Protocol .. 68

Transmission Control Protocol .. 69

User Datagram Protocol... 70

Sockets ... 70

First Project - ICMP PING .. 71

8 Content

Debug Support ... 74

Using RL-TCPnet with RTX ... 74

RL-TCPnet Applications ... 76

Trivial File Transfer ... 76

Adding the TFTP Service .. 76

HTTP Server .. 77

Web Server Content ... 78

Adding Web Pages... 78

Adding HTML as C Code .. 79

Adding HTML with RL-Flash ... 81

The Common Gateway Interface ... 82

Dynamic HTML .. 82

Data Input Using Web Forms .. 84

Using the POST Method .. 84

Using the GET Method .. 87

Using JavaScript .. 88

AJAX Support ... 90

Simple Mail Transfer Client .. 94

Adding SMTP Support .. 94

Sending a Fixed Email Message .. 95

Dynamic Message .. 96

Telnet Server .. 98

Telnet Helper Functions ... 100

DNS Client ... 101

Socket Library ... 102

User Datagram Protocol (UDP) Communication .. 103

Transmission Control Protocol (TCP) Communication................................. 105

Deployment .. 108

Serial Drivers ... 109

Chapter 5. RL-USB Introduction .. 111

The USB Protocol – Key Concepts ... 111

USB Physical Network .. 111

Logical Network .. 112

USB Pipes And Endpoints ... 113

Interrupt Pipe ... 115

Isochronous Pipe .. 115

Bulk Pipe ... 115

Bandwidth Allocation .. 116

Device Configuration ... 117

Device Descriptor .. 118

Configuration Descriptor ... 119

Getting Started: Building Applications with RL-ARM 9

Interface Descriptor ... 120

Endpoint Descriptor ... 121

RL-USB ... 122

RL-USB Driver Overview ... 122

First USB Project ... 124

Configuration ... 124

Event Handlers ... 125

USB Descriptors .. 126

Class Support ... 127

Human Interface Device .. 128

HID Report Descriptors ... 128

HID Client ... 133

Enlarging the IN & OUT Endpoint Packet Sizes ... 134

Mass Storage .. 136

Audio Class .. 138

Composite Device .. 139

Compliance Testing ... 140

Chapter 6. RL-CAN Introduction ... 141

The CAN Protocol – Key Concepts ... 141

CAN Node Design ... 142

CAN Message Frames ... 143

CAN Bus Arbitration ... 145

RL-CAN Driver ... 146

First Project .. 146

CAN Driver API .. 147

Basic Transmit and Receive .. 148

Remote Request ... 149

Object Buffers .. 151

Glossary .. 152

10 Chapter 1. Introduction

Chapter 1. Introduction

The last few years have seen an explosive growth in both the number and

complexity of ARM processor-based microcontrollers. This diverse base of

devices now offers the developer a suitable microcontroller for almost all

applications. However, this rise in sophisticated hardware also calls for more and

more complex software. With ever-shorter project deadlines, it is becoming just

about impossible to develop the software to drive these devices without the use

of third-party middleware.

The Keil Real-Time Library (RL-ARM) is a

collection of easy-to-use middleware components

that are designed to work across many different

microcontrollers. This allows you to learn the

software once and then use it multiple times.

The RL-ARM middleware integrates into the

Keil Microcontroller Development Kit

(MDK-ARM).

RTX RTOS Source Code

TCPnet Networking Suite

Flash File System

USB Device Interface

CAN Interface

RTOS and Middleware

Components

E
x
a

m
p

le
s
 a

n
d

 T
e
m

p
la

te
s

These two development tools allow you to

rapidly develop sophisticated software

applications across a vast range of ARM

processor-based microcontrollers. In this book,

we will look at each of the RL-ARM middleware components and see how to use

all the key features in typical applications.

RL-ARM Overview

The RL-ARM library consists of

five main components; a Flash-

based file system, a TCP/IP

networking suite, drivers for

USB and CAN, and the RTX

Kernel. Each of the middleware

components is designed to be

used with the Keil RTX real-time operating system. However, with the

exception of the CAN driver, each component may be used without RTX.

Getting Started: Building Applications with RL-ARM 11

RTX RTOS

Traditionally developers of

small, embedded applications

have had to write virtually all the

code that runs on the

microcontroller. Typically, this

is in the form of interrupt

handlers with a main

background-scheduling loop. While there is nothing intrinsically wrong with

this, it does rather miss the last few decades of advancement in program structure

and design. Now, for the first time, with the introduction of 32-bit ARM

processor-based microcontrollers we have low-cost, high-performance devices

with increasingly large amounts of internal SRAM and Flash memory. This

makes it possible to use more advanced software development techniques.

Introducing a Real-Time Operating System (RTOS) or real-time executive into

your project development is an important step in the right direction. With an

RTOS, all the functional blocks of your design are developed as tasks, which are

then scheduled by RTX. This forces a detailed design analysis and consideration

of the final program structure at the beginning of the development. Each of the

program tasks can be developed, debugged, and tested in isolation before

integration into the full system. Each RTOS task is then easier to maintain,

document, and reuse. However, using an RTOS is only half the story.

Increasingly, customers want products that are more complex in shorter and

shorter time. While microcontrollers with suitable peripherals are available, the

challenge is to develop applications without spending months writing the low-

level driver code.

Flash File System

The RL-Flash file system allows

you to place a PC-compatible file

system in any region of a

microcontroller’s memory. This

includes the on-chip and external

RAM and Flash memory, as well

as SPI based Flash memory and

SD/MMC memory cards.

12 Chapter 1. Introduction

The RL-Flash file system comes with all the driver support necessary, including

low-level Flash drivers, SPI drivers, and MultiMedia Card interface drivers. This

gets the file system up-and-running with minimal fuss and allows you to

concentrate on developing your application software. In the past, the use of a full

file system in a small, embedded microcontroller has been something of a luxury.

However, once you start developing embedded firmware with access to a small

file system, you will begin to wonder how you ever managed without it!

TCP/IP

The RL-TCPnet library is a full

networking suite written for

small ARM processor-based

microcontrollers specifically. It

consists of one generic library

with dedicated Ethernet drivers

for supported microcontrollers

and a single configuration file.

SLIP and PPP protocols are also

supported to allow UART-based

communication either directly from a PC or remotely via a modem.

The RL-TCPnet library supports raw TCP and UDP communication, which

allows you to design custom networking protocols. Additional application layer

support can be added to enable common services, including SMTP clients to send

email notification, plus DNS and DHCP clients for automatic configuration. RL-

TCPnet can also enable a microcontroller to be a server for the TELNET, HTTP,

and File Transfer (FTP) protocols.

USB

The USB protocol is complex

and wide-ranging. To implement

a USB-based peripheral, you

need a good understanding of the

USB peripheral, the USB

protocol, and the USB host

operating system.

Getting Started: Building Applications with RL-ARM 13

Typically, the host will be a PC. This means that you need to have a deep

knowledge of the Windows operating system and its device drivers. Getting all

of these elements working together would be a development project in its own.

Like the TCP/IP library, the RL-USB driver is a common software stack

designed to work across all supported microcontrollers. Although you can use

the RL-USB driver to communicate with a custom Windows device driver, it has

been designed to support common USB classes. Each USB class has its own

native driver within the Windows operating system. This means that you do not

need to develop or maintain your own driver.

The class support provided with RL-USB includes Human Interface Device

(HID), Mass Storage Class (MSC), Communication Device Class (CDC), and

Audio Class. The HID Class allows you to exchange custom control and

configuration data with your device. The Mass Storage Class allows the

Windows operating system to access the data stored within the RL-Flash file

system in the same manner as a USB pen drive. The Communication Device

Class can be used to realize a virtual COM Port. Finally, the Audio Class allows

you to exchange streaming audio data between the device and a PC. Together

these four classes provide versatile support for most USB design requirements.

CAN

The RL-CAN driver is the one

component of the RL-ARM

library that is tightly coupled to

the RTX. The CAN driver

consists of just six functions that

allow you to initialize a given

CAN peripheral, define, transmit

and receive CAN message

objects, and exchange data with other nodes on the CAN network.

The RL-CAN driver has a consistent programming API for all supported CAN

peripherals, allowing easy migration of code or integration of several different

microcontrollers into the one project. The CAN driver also uses RTX message

queues to buffer, transmit and receive messages, ensuring ordered handling of the

CAN network data.

14 Chapter 1. Introduction

Installation

The RL-ARM is a collection of middleware components designed to integrate

with the Keil Microcontroller Development Kit (MDK-ARM). To use this book

you will need to have both the MDK-ARM and RL-ARM installed on your PC.

MDK-ARM may be installed from either CD-ROM, or may be downloaded from

the web. Currently, RL-ARM may only be downloaded from the web.

Keil products are available on CD-ROM and via download from www.keil.com.

Updates to the related products are regularly available at www.keil.com/update.

Demo versions of various products are obtainable at www.keil.com/demo.

Additional information is provided under www.keil.com/arm.

Please check the minimum hardware and software requirements that must be

satisfied to ensure that your Keil development tools are installed and will

function properly. Before attempting installation, verify that you have:

 A standard PC running Microsoft Windows XP, or Windows Vista,

 1GB RAM and 500 MB of available hard-disk space is recommended,

 1024x768 or higher screen resolution; a mouse or other pointing device,

 A CD-ROM drive.

Product Folder Structure

The SETUP program copies the development tools into subfolders. The base

folder defaults to C:\KEIL. When the RL-ARM is installed, it integrates into the

MDK-ARM installation. The table below outlines the key RL-ARM files:

File Type Path

MDK-ARM Toolset C:\KEIL\ARM

Include and Header Files C:\KEIL\ARM\RVxx\INC

Libraries C:\KEIL\ARM\RVxx\LIB

Source Code C:\KEIL\ARM\RL

Standard Examples C:\KEIL\ARM\Boards\manufacturer\board

Flash Programming C:\KEIL\ARM\FLASH

On-line Help Files and Release Notes C:\KEIL\ARM\HLP

Getting Started: Building Applications with RL-ARM 15

Last-Minute Changes

As with any high-tech product, last minute changes might not be included into

the printed manuals. These last-minute changes and enhancements to the

software and manuals are listed in the Release Notes shipped with the product.

Requesting Assistance

At Keil, we are committed to providing you with the best-embedded

development tools, documentation, and support. If you have suggestions and

comments regarding any of our products, or you have discovered a problem with

the software, please report them to us, and where applicable make sure to:

1. Read the section in this manual that pertains to the task you are attempting,

2. Check the update section of the Keil web site to make sure you have the latest

software and utility version,

3. Isolate software problems by reducing your code to as few lines as possible.

If you are still having difficulties, please report them to our technical support

group. Make sure to include your license code and product version number

displayed through the Help – About Menu of µVision. In addition, we offer the

following support and information channels, accessible at ww.keil.com/support.

1. The Support Knowledgebase is updated daily and includes the latest questions

and answers from the support department,

2. The Application Notes can help you in mastering complex issues, like

interrupts and memory utilization,

3. Check the on-line Discussion Forum,

4. Request assistance through Contact Technical Support (web-based E-Mail),

5. Finally, you can reach the support department directly via

support.intl@keil.com or support.us@keil.com.

16 Chapter 2. Developing With an RTOS

Chapter 2. Developing With an RTOS

In the course of this chapter we will consider the idea of using RTX, the Keil

small footprint RTOS, on an ARM processor-based microcontroller. If you are

used to writing procedural-based C code on microcontrollers, you may doubt the

need for such an operating system. If you are not familiar with using an RTOS in

real-time embedded systems, you should read this chapter before dismissing the

idea. The use of an RTOS represents a more sophisticated design approach,

inherently fostering structured code development, which is enforced by the

RTOS Application Programming Interface (API).

The RTOS structure allows you to take an object-orientated design approach

while still programming in C. The RTOS also provides you with multithreaded

support on a small microcontroller. These two features create a shift in design

philosophy, moving us away from thinking about procedural C code and flow

charts. Instead, we consider the fundamental program tasks and the flow of data

between them. The use of an RTOS also has several additional benefits, which

may not be immediately obvious. Since an RTOS-based project is composed of

well-defined tasks, using an RTOS helps to improve project management, code

reuse, and software testing.

The tradeoff for this is that an RTOS has additional memory requirements and

increased interrupt latency. Typically, RTX requires between 500 Bytes and

5KBytes of RAM and 5KBytes of code, but remember that some of the RTOS

code would be replicated in your program anyway. We now have a generation of

small, low-cost microcontrollers that have enough on-chip memory and

processing power to support the use of an RTOS. Developing using this

approach is therefore much more accessible.

Getting Started

This chapter first looks at setting up an introductory RTOS project for ARM7,

ARM9, and Cortex-M based microcontrollers. Next, we will go through each of

the RTOS primitives and explain how they influence the design of our

application code. Finally, when we have a clear understanding of the RTOS

features, we will take a closer look at the RTOS configuration file.

Getting Started: Building Applications with RL-ARM 17

Setting-Up a Project

The first exercise in the examples accompanying this book provides a PDF

document giving a detailed step-by-step guide for setting up an RTX project.

Here we will look at the main differences between a standard C program and an

RTOS-based program. First, our µVision project is defined in the default way.

This means that we start a new project and select a microcontroller from the

µVision Device Database®
. This will add the startup code and configure the

compiler, linker, simulation model,

debugger, and Flash programming

algorithms. Next, we add an empty C

module and save it as main.c to start a C-

based application. This will give us a

project structure similar to that shown

on the right. A minimal application

program consists of an Assembler file

for the startup code and a C module.

The RTX configuration is held in the

file RTX_Config.c that must be added to

your project. As its name implies,

RTX_Config.c holds the configuration

settings for RTX. This file is specific to

the ARM processor-based

microcontroller you are using. Different versions of the file are located in

C:\KEIL\ARM\STARTUP.

If you are using an ARM7 or ARM9-based microcontroller, you can select the

correct version for the microcontroller family you are using and RTX will work

“out-of-the-box”. For Cortex-M-based microcontrollers there is one generic

configuration file. We will examine this file in more detail later, after we have

looked more closely at RTX and understood what needs to be configured.

To enable our C code to access the RTX API, we need to add an include file to

all our application files that use RTX functions. To do this you must add the

following include file in main.

#include <RTL.h>

18 Chapter 2. Developing With an RTOS

We must let the µVision IDE utility

know that we are using RTX so that it

can link in the correct library. This is

done by selecting “RTX Kernel” in the

Options for Target menu, obtained by

right clicking on “RTOS”.

The RTX Kernel library is added to the

project by selecting the operating

system in the dialog Options for Target.

When using RTX with an ARM7 or ARM9 based microcontroller, calls to the

RTOS are made by Software Interrupt instructions (SWI). In the default startup

code, the SWI interrupt vector jumps to a tight loop, which traps SWI calls. To

configure the startup code to work with RTX we must modify the SWI vector

code to call RTX.

A part of RTX runs in the privileged supervisor mode and is called with software

interrupts (SWI). We must therefore disable the SWI trap in the startup code.

With Cortex-based microcontroller, the interrupt structure is different and does

not require you to change the startup code, so you can ignore this step.

You must disable the default SWI handler and import the SWI_Handler used by

the RTOS, when used with ARM7 or ARM9.

 IMPORT SWI_Handler

Undef_Handler B Undef_Handler
;SWI_Handler B SWI_Handler ; Part of RTL
PAbt_Handler B PAbt_Handler
DAbt_Handler B DAbt_Handler
IRQ_Handler B IRQ_Handler
FIQ_Handler B FIQ_Handler

In the vector table, the default SWI_Handler must be commented out and the

SWI_Handler label must be declared as an import. Now, when RTX generates a

software interrupt instruction, the program will jump to the SWI_Handler in the

RTX library. These few steps are all that are required to configure a project to

use RTX.

Exercise: First Project

The first RTOS exercise guides you through setting up and debugging an RTX-

based project.

Getting Started: Building Applications with RL-ARM 19

RTX Kernel

RTX consists of a scheduler that supports round-robin, pre-emptive, and co-

operative multitasking of program tasks, as well as time and memory

management services. Inter-task communication is supported by additional

RTOS objects, including event triggering, semaphores, Mutex, and a mailbox

system. As we will see, interrupt handling can also be accomplished by

prioritized tasks, which are scheduled by the RTX kernel.

The RTX kernel contains a

scheduler that runs program code

as tasks. Communication

between tasks is accomplished

by RTOS objects such as events,

semaphores, Mutexes, and

mailboxes. Additional RTOS

services include time and

memory management and

interrupt support.

Tasks

The building blocks of a typical C program are functions that we call to perform

a specific procedure and which then return to the calling function. In an RTOS,

the basic unit of execution is a “Task”. A task is very similar to a C procedure,

but has some fundamental differences.

Procedure Task

unsigned int procedure (void) {
 …
 …
 return (val);
}

__task void task (void) {
 for (;;) {
 …
 }
}

We always expect to return from C functions, however, once started an RTOS

task must contain an endless loop, so that it never terminates and thus runs

forever. You can think of a task as a mini self-contained program that runs

within the RTOS. While each task runs in an endless loop, the task itself may be

started by other tasks and stopped by itself or other tasks. A task is declared as a

C function, however RTX provides an additional keyword __task that should be

added to the function prototype as shown above. This keyword tells the compiler

20 Chapter 2. Developing With an RTOS

not to add the function entry and exit code. This code would normally manage

the native stack. Since the RTX scheduler handles this function, we can safely

remove this code. This saves both code and data memory and increases the

overall performance of the final application.

An RTOS-based program is made up of a number of tasks, which are controlled

by the RTOS scheduler. This scheduler is essentially a timer interrupt that allots

a certain amount of execution time to each task. So task1 may run for 100ms

then be de-scheduled to allow task2 to run for a similar period; task 2 will give

way to task3, and finally control passes back to task1. By allocating these slices

of runtime to each task in a round-robin fashion, we get the appearance of all

three tasks running in parallel to each other.

Conceptually we can think of each task as performing a specific functional unit

of our program, with all tasks running simultaneously. This leads us to a more

object-orientated design, where each functional block can be coded and tested in

isolation and then integrated into a fully running program. This not only imposes

a structure on the design of our final application but also aids debugging, as a

particular bug can be easily isolated to a specific task. It also aids code reuse in

later projects. When a task is created, it is allocated its own task ID. This is a

variable, which acts as a handle for each task and is used when we want to

manage the activity of the task.

OS_TID id1, id2, id3;

Task Control Block Task Stack

Priority & State Context

Task

In order to make the task-switching process happen, we have the code overhead

of the RTOS and we have to dedicate a CPU hardware timer to provide the

RTOS time reference. For ARM7 and ARM9 this must be a timer provided by

the microcontroller peripherals. In a Cortex-M microcontroller, RTX will use the

SysTick timer within the Cortex-M processor. Each time we switch running

tasks the RTOS saves the state of all the task variables to a task stack and stores

the runtime information about a

task in a Task Control Block. The

“context switch time”, that is, the

time to save the current task state

and load up and start the next task,

is a crucial value and will depend

on both the RTOS kernel and the

design of the underlying hardware.

Getting Started: Building Applications with RL-ARM 21

Each task has its own stack for saving its data during a context switch. The Task

Control Block is used by the kernel to manage the active tasks.

The Task Control Block contains information about the status of a task. Part of

this information is its run state. A task can be in one of four basic states,

RUNNING, READY, WAITING, or INACTIVE. In a given system only one

task can be running, that is, the CPU is executing its instructions while all the

other tasks are suspended in one of the other states. RTX has various methods of

inter-task communication: events, semaphores, and messages. Here, a task may

be suspended to wait to be signaled by another task before it resumes its READY

state, at which point it can be placed into RUNNING state by the RTX scheduler.

At any moment a single task may be running. Tasks may also be waiting on an

OS event. When this occurs, the tasks return to the READY state and are

scheduled by the kernel.

Task Description

RUNNING The currently running TASK

READY TASKS ready to run

WAIT DELAY TASKS halted with a time DELAY

WAIT INT TASKS scheduled to run periodically

WAIT OR TASKS waiting an event flag to be set

WAIT AND TASKS waiting for a group event flag to be set

WAIT SEM TASKS waiting for a SEMAPHORE

WAIT MUT TASKS waiting for a SEMAPHORE MUTEX

WAIT MBX TASKS waiting for a MAILBOX MESSAGE

INACTIVE A TASK not started or detected

Starting RTX

To build a simple RTX-based program, we declare each task as a standard C

function and a TASK ID variable for each Task.

__task void task1 (void);
__task void task2 (void);
OS_TID tskID1, tskID2;

After reset, the microcontroller enters the application through the main()

function, where it executes any initializing C code before calling the first RTX

function to start the operating system running.

22 Chapter 2. Developing With an RTOS

void main (void) {

 IODIR1 = 0x00FF0000; // Do any C code you want
 os_sys_init (task1); // Start the RTX call the first task
}

The os_sys_init () function launches RTX, but only starts the first task running.

After the operating system has been initialized, control will be passed to this task.

When the first task is created it is assigned a default priority. If there are a

number of tasks ready to run and they all have the same priority, they will be

allotted run time in a round-robin fashion. However, if a task with a higher

priority becomes ready to run, the RTX scheduler will de-schedule the currently

running task and start the high priority task running. This is called pre-emptive

priority-based scheduling. When assigning priorities you have to be careful,

because the high priority task will continue to run until it enters a WAITING

state or until a task of equal or higher priority is ready to run.

Tasks of equal priority will be

scheduled in a round-robin

fashion. High priority tasks will

pre-empt low priority tasks and

enter the RUNNING state “on

demand”.

Two additional calls are

available to start RTX;

os_sys_init_prio(task1) will start the RTOS and create the task with a user-

defined priority. The second OS call is os_sys_init_user(task1, &stack,

Stack_Size). This starts the RTOS and defines a user stack.

Creating Tasks

Once RTX has been started, the first task created is used to start additional tasks

required for the application. While the first task may continue to run, it is good

programming style for this task to create the necessary additional tasks and then

delete itself.

__task void task1 (void) {
tskID2 = os_tsk_create (task2,0x10); // Create the second task
 // and assign its priority.
tskID3 = os_tsk_create (task3,0x10); // Create additional tasks
 // and assign priorities.
os_tsk_delete_self (); // End and self-delete this task
}

Getting Started: Building Applications with RL-ARM 23

The first task can create further active tasks with the os_tsk_create() function.

This launches the task and assigns its task ID number and priority. In the

example above we have two running tasks, task2 and task3, of the same priority,

which will both be allocated an equal share of CPU runtime. While the

os_tsk_create() call is suitable for creating most tasks, there are some additional

task creation calls for special cases.

It is possible to create a task and pass a parameter to the task on startup. Since

tasks can be created at any time while RTX is running, a task can be created in

response to a system event and a particular parameter can be initialized on

startup.

tskID3 = os_tsk_create_ex (Task3, priority, parameter);

When each task is created, it is also assigned its own stack for storing data during

the context switch. This task stack is a fixed block of RAM, which holds all the

task variables. The task stacks are defined when the application is built, so the

overall RAM requirement is well defined. Ideally, we need to keep this as small

as possible to minimize the amount of RAM used by the application. However,

some tasks may have a large buffer, requiring a much larger stack space than

other tasks in the system. For these tasks, we can declare a larger task stack,

rather than increase the default stack size.

static U64 stk4 [400/8];

A task can now be declared with a custom stack size by using the

os_tsk_create_user() call and the dedicated stack.

tskID4 = os_tsk_create_user (Task4, priority, &stk4, sizeof (stk4));

Finally, there is a combination of both of the above task-creating calls where we

can create a task with a large stack space and pass a parameter on startup.

static U64 stk5 [400/8];

tskID5 = os_tsk_create_user_ex (Tsk5, prio, &stk5, sizeof (stk5), param);

Exercise: Tasks

This exercise presents the minimal code to start the RTOS and create two

running tasks.

24 Chapter 2. Developing With an RTOS

Task Management

Once the tasks are running, there are a small number of RTX system calls, which

are used to manage the running tasks. It is possible to elevate or lower a task’s

priority either from another function or from within its own code.

OS_RESULT os_tsk_prio (tskID2, priority);
OS_RESULT os_tsk_prio_self (priority);

As well as creating tasks, it is also possible for a task to delete itself or another

active task from the RTOS. Again we use the task ID rather than the function

name of the task.

OS_RESULT = os_tsk_delete (tskID1);
 os_tsk_delete_self ();

Finally, there is a special case of task switching where the running task passes

control to the next ready task of the same priority. This is used to implement a

third form of scheduling called co-operative task switching.

os_tsk_pass (); // switch to next ready to run task

Multiple Instances

One of the interesting possibilities of an RTOS is that you can create multiple

running instances of the same base task code. For example, you could write a

task to control a UART and then create two running instances of the same task

code. Here each instance of UART_Task would manage a different UART.

tskID3_0 = os_tsk_create_ex (UART_Task, priority, UART1);

Exercise: Multiple instances

This exercise creates multiple instances of one base task and passes a parameter

on startup to control the functionality of each instance.

Time Management

As well as running your application code as tasks, RTX also provides some

timing services, which can be accessed through RTX function calls.

Getting Started: Building Applications with RL-ARM 25

Time Delay

The most basic of these timing services is a simple timer delay function. This is

an easy way of providing timing delays within your application. Although the

RTX kernel size is quoted as 5K bytes, features such as delay loops and simple

scheduling loops are often part of a non-RTOS application and would consume

code bytes anyway, so the overhead of the RTOS can be less than it initially

appears.

void os_dly_wait (unsigned short delay_time)

This call will place the calling task into the WAIT_DELAY state for the

specified number of system timer ticks. The scheduler will pass execution to the

next task in the READY state.

During their lifetime, tasks move

through many states. Here, a

running task is blocked by an

os_dly_wait() call so it enters a

WAIT state. When the delay

expires, it moves to the READY

state. The scheduler will place it

in the RUN state. If its time slice

expires, it will move back to the

READY state.

When the timer expires, the task will leave the WAIT_DELAY state and move to

the READY state. The task will resume running when the scheduler moves it to

the RUNNING state. If the task then continues executing without any further

blocking OS calls, it will be de-scheduled at the end of its time slice and be

placed in the READY state, assuming another task of the same priority is ready

to run.

Exercise: Time Management

This exercise replaces the user delay loops with the OS delay function.

	Contact us
	Preface
	Using This Book
	Chapter Overview

	Document Conventions
	Content
	Chapter 1. Introduction
	RL-ARM Overview
	RTX RTOS
	Flash File System
	TCP/IP
	USB
	CAN
	Installation
	Product Folder Structure
	Last-Minute Changes
	Requesting Assistance

	Chapter 2. Developing With an RTOS
	Getting Started
	Setting-Up a Project
	RTX Kernel
	Tasks
	Starting RTX
	Creating Tasks
	Task Management
	Multiple Instances
	Time Management

