: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

74F166 8-bit bidirectional universal shift register

IC15 Data Handbook

FEATURES

- High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in high and low states)
- Synchronous parallel to serial applications
- Synchronous serial data input for easy expansion
- Clock enable for "do nothing" mode
- Asynchronous master reset
- Expandable to 16 bits in 8-bit increments
- Industrial temperature range available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

DESCRIPTION

The 74F166 is a high speed 8-bit shift register that has fully synchronous serial parallel data entry selected by an active low parallel enable (PE) input. When the PE is low one setup time before the low-to-high clock transition, parallel data is entered into the register.
When $\overline{P E}$ is high, data is entered into internal bit position Q0 from serial data input (Ds), and the remaining bits are shifted one place to the right (Q0 \rightarrow Q1 \rightarrow Q2, etc.) with each positive going clock transition.

For expansion of the register in parallel to serial converters, the Q7 output is connected to the Ds input of the succeeding stage. The clock input is gated OR structure which allows one input to be used as an active-low clock enable (CE) input. The pin assignment for the CP and CE inputs is arbitrary and can be reversed for layout convenience. The low-to-high transition of CE input should only take place while the CP is high for predictable operation. A low on the master reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all bit positions to a low state.

TYPE	TYPICAL $\mathrm{f}_{\max }$	TYPICAL SUPPLY CUR- RENT(TOTAL)
74 F 166	175 MHz	50 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE		PKG DWG \#
	COMMERCIAL RANGE $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	INDUSTRIAL RANGE $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	
16-pin plastic DIP	N74F166N	174F166N	SOT38-4
16-pin plastic SO	N74F166D	174F166D	SOT109-1

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	$74 F$ $($ U.L.) HIGH/ LOW	LOAD VALUE HIGH/ LOW
D0 - D7	Parallel data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
Ds	Serial data input (shift right)	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
CP	Clock input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CE	Clock enable input (active low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
PE	Parallel enable input (active low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
MR	Master reset input (active low)	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
Q7	Data output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

Note to input and output loading and fan out table

1. One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the high state and 0.6 mA in the low state.

PIN CONFIGURATION

LOGIC SYMBOL

IEC/IEEE SYMBOL

FUNCTION TABLE

INPUTS					Qn REGISTER		OUTPUT	OPERATING MODE
PE	$\overline{C E}$	CP	DS	D0 -D7	Q0	Q1- Q6	Q7	
I	I	\uparrow	X	I-1	L	L-L	L	Parallel load
1	I	\uparrow	X	h-h	H	H-H	H	
h	I	\uparrow	I	X-X	L	q0-q5	q6	Serial shift
h	1	\uparrow	h	$x-x$	H	q0-q5	q6	
X	h	X	X	X-X	qn	q1-q6	q7	Hold (do nothing)

Notes to function table

1. $\mathrm{H}=$ High-voltage level
2. $\mathrm{h}=$ High voltage level one setup time before the low-to-high clock transition
3. $\mathrm{L}=$ Low-voltage level
4. I = Low voltage level one setup time before the low-to-high clock transition
5. $\mathrm{qn}=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the low-to-high clock transition
6. $X=$ Don't care
7. $\uparrow=$ Low-to-high clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
I_{N}	Input current		-30 to +5	mA
V OUT	Voltage applied to output in high output state		-0.5 to V_{CC}	V
Iout	Current applied to output in low output state		40	mA
Tamb	Operating free air temperature range	Commercial range	0 to +70	${ }^{\circ} \mathrm{C}$
		Industrial range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IN }}$	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{lk}	Input clamp current				-18	mA
IOH	High-level output current				-1	mA
lol	Low-level output current				20	mA
$\mathrm{T}_{\text {amb }}$	Operating free air temperature range	Commercial range	0		+70	${ }^{\circ} \mathrm{C}$
		Industrial range	-40		+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				MIN	TYP ${ }^{2}$	MAX							
V_{OH}	High-level output voltage						$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}= \\ & \mathrm{MAX}^{2}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}= \\ & \mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \\ & \hline \end{aligned}$	$\mathrm{IOL}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.30	0.50	V			
				$\pm 5 \% V_{\text {cC }}$			0.30	0.50	V				
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
I_{1}	Input current at maximum input voltage		$\begin{array}{c\|} \hline \text { others } \\ \hline \overline{C E}, C P^{3} \end{array}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{H}	High-level input current	$\frac{\text { others }}{\overline{\mathrm{MR}}, \mathrm{Ds}}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
						40	$\mu \mathrm{A}$						
		Industrial only	others						40	$\mu \mathrm{A}$			
			$\overline{\mathrm{MR}}$, Ds						80	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {IL }}$	Low-level input current		others				$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$
			MR, Ds			-40				$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{4}$			$V_{C C}=M A X$			-60		-150	mA			
ICC	Supply current (total)			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \overline{\mathrm{PE}}=\overline{\mathrm{CE}}=\mathrm{Dn}=\mathrm{GND}, \\ & \mathrm{MR}=\mathrm{Ds}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow \end{aligned}$				50	70	mA			

Notes to DC electrical characteristics

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. When testing $C P, \overline{C E}$ must remain in high state, whereas $C P$ must remain in high state when testing $\overline{C E}$.
4. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		$\begin{gathered} \mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	135	175		110		100		ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay CP to Q7	Waveform 1	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \end{gathered}$	ns
$t_{\text {PHL }}$	Propagation delay MR to Q7	Waveform 2	4.0	6.5	8.5	4.0	9.5	4.0	9.5	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low Dn, Ds to CP, CE	Waveform 3	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, high or low Dn, Ds to CP	Waveform 3	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			1.0 0.0		$\begin{aligned} & 1.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, high or low Dn, Ds to $\overline{\mathrm{CE}}$	Waveform 3	$\begin{aligned} & 1.5 \\ & 0.0 \end{aligned}$			2.0 0.0		$\begin{aligned} & 2.0 \\ & 0.0 \end{aligned}$		ns
$\mathrm{t}_{\text {su }}(\mathrm{L})$	Setup time, low CE to CP	Waveform 3	5.0			6.0		6.0		ns
$\mathrm{th}_{\mathrm{h}}(\mathrm{H})$	Hold time, high CE to CP	Waveform 3	0.0			0.0		0.0		ns
$\begin{aligned} & \begin{array}{l} \mathrm{t}_{\text {su }}(\mathrm{H}) \\ \mathrm{t}_{\text {su }}(\mathrm{L}) \end{array} \end{aligned}$	Setup time, high or low PE to CP, CE	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, high or low PE to CP	Waveform 3	$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP pulse width, high or low	Waveform 1	$\begin{aligned} & \hline 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 3.5 \\ & 6.0 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	MR pulse width, low	Waveform 2	4.0			4.0		4.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	4.0			4.5		4.5		ns

AC WAVEFORMS

Waveform 2. Master reset pulse width, master reset to output delay and master reset to clock recovery time

Waveform 1. Propagation delay for clock input to output, clock pulse width, and maximum clock frequency

Waveform 3. Setup and hold times

Notes to AC waveforms

1. For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
2. The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

DEFINITIONS:

$R_{L}=$ Load resistor;
see AC ELECTRICAL CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC ELECTRICAL CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

Input Pulse Definition

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{T L H}}$	$\mathbf{t}_{\mathbf{T H L}}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1} min.	A_{2} max.	b	b_{1}	b_{2}	c	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\underset{\max }{Z^{(1)}}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT38-4					$-92-11-17$	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	0.7 0.3	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

outLine VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC		- ¢	$\begin{aligned} & -95-01-25 \\ & 97-05-22 \end{aligned}$

8-bit bidirectional universal shift register

NOTES

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

