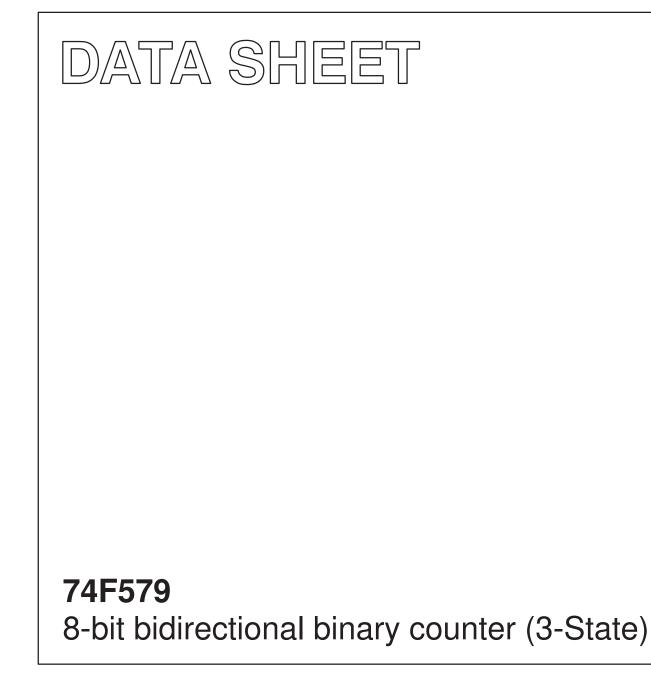
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification Supersedes data of 1992 May 04 2000 Dec 18

74F579

FEATURES

- Fully synchronous operation
- Multiplexed 3-State I/O ports for bus oriented applications
- Built in cascading carry capability
- U/D pin to control direction of counting
- Separate pins for Master reset and Synchronous operation
- Center power pins to reduce effects of package inductance
- Count frequency 115 MHz Typ
- Supply current 100 mA Typ
- See 74F269 for 24-pin separate I/O port version
- See 74F779 for 16-pin version

DESCRIPTION

The 74F579 is a fully synchronous 8-stage Up/Down Counter with multiplexed 3-State I/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry look-ahead for easy cascading and a U/D input to control the direction of counting. All state changes, except for the case of asynchronous reset, are initiated by the rising edge of the clock. TC output is not recommended for use as a clock or asynchronous reset due to the possibility of decoding spikes.

PIN CONFIGURATION

CP 1	20 MR
I/O0 2	19 SR
I/O1 3	18 CEP
I/O2 4	17 CET
I/O3 5	16 VCC
GND 6	15 TC
I/O4 7	14 U/D
I/O5 8	13 PE
I/O6 9	12 CS
I/O7 [10	11 OE
	SF01085

ORDERING INFORMATION

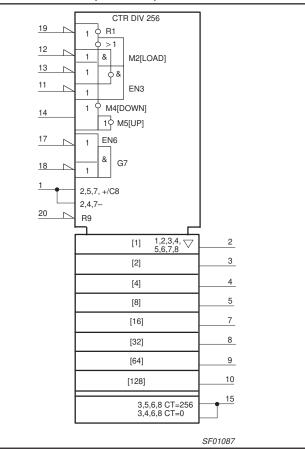
ТҮРЕ	TYPICAL f _{MAX}	TYPICAL SUPPLY CURRENT (TOTAL)
74F579	115MHz	100 mA

ORDERING INFORMATION

DESCRIPTION	$\begin{array}{l} \mbox{COMMERCIAL RANGE} \\ \mbox{V}_{CC} = 5 \ \mbox{V} \pm 10\%, \\ \mbox{T}_{amb} = 0 \ \mbox{to} + 70 \ \ \mbox{°C} \end{array}$	PKG DWG #		
20-Pin Plastic DIP	N74F579N	SOT146-1		
20-Pin Plastic SOL	N74F579D	SOT163-1		

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH / LOW
1/0	Data Inputs	3.5/1.0	70 μA / 0.6 mA
I/O _n	Data Outputs	150/40	3.0 mA / 24 mA
PE	Parallel Enable input (active Low)	1.0/1.0	20 μA/ 0.6 mA
U/D	Up/Down count control input	1.0/1.0	20 μA / 0.6 mA
MR	Master Reset input (active Low)	1.0/1.0	20 µA / 0.6 mA
SR	Synchronous Reset input (active Low)	1.0/1.0	20 µA / 0.6 mA
CEP	Count Enable Parallel input (active Low)	1.0/1.0	20 µA / 0.6 mA
CET	Count Enable Trickle input (active Low)	1.0/1.0	20 µA / 0.6 mA
CS	Chip Select input (active Low)	1.0/1.0	20 µA / 0.6 mA
ŌĒ	Output Enable input (active Low)	1.0/1.0	20 μA / 0.6 mA
СР	Clock input (active Rising Edge)	1.0/1.0	20 μA/ 0.6 mA
TC	Terminal Count Output (active Low)	50/33	1.0 mA / 20 mA


NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: 20 µA in the High state and 0.6 mA in the Low state.

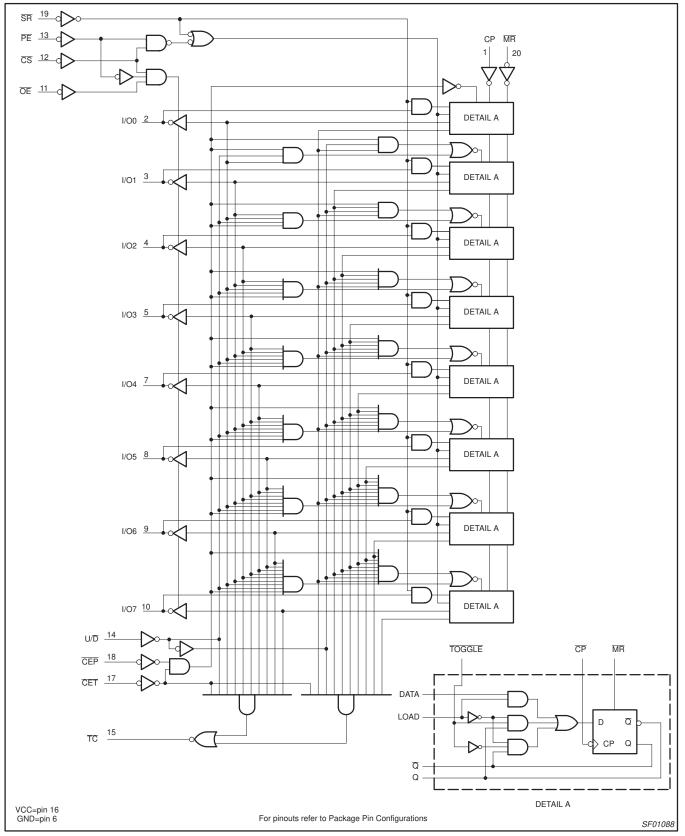
74F579

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

				OPERATING MODE						
MR	SR	CS	PE	CEP	CET	U/D	ŌĒ	CP	7	
Х	Х	Н	Х	Х	Х	Х	Х	Х	I/O0 to I/O7 in high impedance (PE disabled)	
Х	Х	L	н	х	х	х	н	X	I/O0 to I/O7 in high impedance	
Х	Х	L	н	Х	Х	Х	L	Х	Flip-flop output appears on I/On lines	
L	Х	Х	Х	Х	Х	Х	Х	Х	Asynchronous reset for all flip-flops	
Н	L	Х	Х	Х	Х	Х	Х	↑	Synchronous reset for all flip-flops	
Н	Н	L	L	Х	Х	Х	Х	↑	Parallel load all flip-flops	
Н	Н	(not	LL)	Н	Х	Х	Х	↑	Hold	
Н	Н	(not	LL)	Х	н	Х	Х	↑	Hold (TC held High)	
Н	Н	(not	LL)	L	L	н	Х	↑	Count up	
Н	Н	(not	LL)	L	L	L	Х	↑	Count down	


Low voltage level =

= Don't care

L X ↑ Low-to-High clock transition =

CS and PE should never be Low voltage level at the same time. (not LL) =

LOGIC DIAGRAM

74F579

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V	
I _{IN}	Input current	-30 to +5	mA	
V _O	Voltage applied to output in High output state		–0.5 to +V _{CC}	V
		TC	40	mA
I _O	Current applied to output in Low output state	I/O0	48	mA
T _{amb}	Operating free-air temperature range		0 to +70	°C
T _{stg}	Storage temperature		-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UNIT			
			MIN	NOM	MAX	
V _{CC}	Supply voltage		4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V	
V _{IL}	Low-level input voltage			0.8	V	
I _{IK}	Input clamp current			-18	mA	
		TC			-1	mA
юн	High-level output current	I/O _n			-3	mA
		TC			20	mA
I _{OL}	Low-level output current	I/O _n			24	mA
T _{amb}	Operating free-air temperature range	0		70	°C	

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

OVMDOL	DADAMETED		тгот				LIMITS		
SYMBOL	PARAMETER		151	CONDITIONS ¹		MIN	TYP ²	MAX	UNIT
		TC	V _{CC} = MIN,	1	±10%V _{CC}	2.5			V
V	High-level output voltage		$V_{IL} = MAX,$ $V_{IH} = MIN$	I _{OH} = -1 mA	±5%V _{CC}	2.7	3.4		V
V _{OH}	OH Thigh level output voltage	1/0	(V _{IL} = 0.0 V, V _{IH} = 4.5 V	1	±10%V _{CC}	2.4	3.3		V
		I/O _n V _{IH} = 4.5 V I _{OH} = 4.5 V I _{OH} =		I _{OH} = -3 mA	±5%V _{CC}	2.7	3.3		V
M			$V_{CC} = MIN,$		±10%V _{CC}		0.35	0.50	V
V _{OL}	Low-level output voltage		V _{IL} = MAX, V _{IH} = MIN	I _{OL} = MAX,	±5%V _{CC}		0.35	0.50	V
V _{IK}	Input clamp voltage		V _{CC}		-0.73	-1.2	V		
	Input current	I/O _n	V _{CC} =	V _{CC} = MAX, V _I = 5.5 V				1	mA
1	at maximum input voltage	others	V _{CC} =	MAX, V _I = 7.0 V				100	μA
I _{IH}	High-level input current	except	V _{CC} =	MAX, V _I = 2.7 V				20	μΑ
IIL	Low-level input current	I/O _n	V _{CC} =	MAX, V _I = 0.5 V				-0.6	mA
I _{OZH} + I _{IH}	Off-state output current High-level voltage applied	1/0	V _{CC} =	MAX, V _O = 2.7 V	/			70	μA
I _{OZL} + I _{IL}	Off-state output current Low-level voltage applied	I/O _n	V _{CC} =			-600	μA		
I _{OS}	Short-circuit output current ³		V	/ _{CC} = MAX		-60		-150	mA
		I _{CCH}					95	135	mA
I _{CC}	Supply current (total)	I _{CCL}	V _{CC} = MAX				105	145	mA
		I _{CCZ}					105	150	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions for the applicable type.

 All typical values are at V_{CC} = 5 V, T_{amb} = 25 °C.
All typical values are than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter test, I_{OS} tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDI- TIONS	l V	. _{amb} = +25 ° ′ _{CC} = +5.0 V 50 pF, R _L =	1	$T_{amb} = 0$ $V_{CC} = +5.0$ $C_{L} = 50 \text{ pF},$	UNIT	
			MIN	ТҮР	MAX	MIN	MAX	
f _{MAX}	Maximum clock frequency	Waveform 1	100	115		80		MHz
t _{PLH}	Propagation delay	Waveform 1	5.0	7.5	10.5	4.5	11.5	ns
t _{PHL}	CP to I/O _n		5.0	7.5	10.5	5.0	11.5	ns
t _{PLH}	Propagation delay	Waveform 1	5.5	7.5	10.0	5.0	11.0	ns
t _{PHL}	CP to TC		5.5	7.5	10.0	5.0	11.0	ns
t _{PLH}	Propagation delay	Waveform 4	3.5	5.5	8.0	3.5	9.0	ns
t _{PHL}	U/D to TC		4.5	6.5	8.0	4.5	9.0	ns
t _{PLH}	Propagation delay	Waveform 3	3.5	5.5	7.0	3.5	8.5	ns
t _{PHL}	CET to TC		3.5	6.0	8.0	3.5	8.5	ns
t _{PHL}	Propagation delay MR to I/O _n	Waveform 2	5.0	7.0	9.0	5.0	10.0	ns
t _{PLH}	Propagation delay	Waveform 4	4.0	6.5	9.0	4.0	10.5	ns
t _{PHL}	MR to TC		6.0	8.0	10.5	6.0	12.5	ns
t _{PZH}	Output Enable time \overline{CS} to I/O _n	Waveform 6	4.0	5.0	8.5	3.5	10.0	ns
t _{PZL}		Waveform 7	5.5	7.0	10.5	5.0	11.5	ns
t _{PHZ}	Output Disable time \overline{CS} to I/O _n	Waveform 6	3.0	5.0	7.5	3.0	9.0	ns
t _{PLZ}		Waveform 7	5.0	7.5	9.5	4.5	11.0	ns
t _{PZH}	Output Enable time \overline{PE} to I/O _n	Waveform 6	3.0	4.5	8.0	3.0	9.0	ns
t _{PZL}		Waveform 7	5.0	6.5	10.0	4.5	11.0	ns
t _{PHZ}	$\frac{\text{Output Disable time}}{\text{PE to I/O}_n}$	Waveform 6	3.0	4.0	7.5	3.0	9.0	ns
t _{PLZ}		Waveform 7	2.5	4.0	7.5	2.0	8.5	ns
t _{PZH}	Output Disable time \overline{OE} to I/O _n	Waveform 6	2.5	4.0	7.0	2.5	8.5	ns
t _{PZL}		Waveform 7	4.5	5.5	9.0	4.0	10.5	ns
t _{PHZ}	Output Enable time \overline{OE} to I/O_n	Waveform 6	1.0	2.5	4.0	1.0	5.5	ns
t _{PLZ}		Waveform 7	2.0	4.0	7.0	2.0	8.0	ns

2000 Dec 18

8-bit bidirectional binary counter (3-State)

AC SETUP REQUIREMENTS

		TEST CONDITIONS			LIMITS			
SYMBOL	PARAMETER		V	_{amb} = +25 ° _{CC} = +5.0 V 50 pF, R _L =		$ \begin{array}{c c} T_{amb} = 0 \\ V_{CC} = +5. \\ C_L = 50 \text{ pF}, \end{array} $	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _s (H) t _s (L)	Setup time, High or Low I/O _n to CP	Waveform 5	3.0 3.0			4.0 4.0		ns ns
t _h (H) t _h (L)	Hold time, High or Low I/O _n to CP	Waveform 5	0 0			0 0		ns ns
t _s (H) t _s (L)	Setup time, High or Low U/D to CP	Waveform 5	8.0 8.0			9.0 9.0		ns ns
t _h (H) t _h (L)	Hold time, High or Low U/\overline{D} to CP	Waveform 5	0 0			0 0		ns ns
t _s (H) t _s (L)	Setup time, High or Low PE, SR or CS to CP	Waveform 5	9.5 9.5			10.0 10.0		ns ns
t _h (H) t _h (L)	Hold time, High or Low PE, SR or CS to CP	Waveform 5	0 0			0 0		ns ns
t _s (H) t _s (L)	Setup time, High or Low CEP or CET to CP	Waveform 5	5.0 9.0			5.5 10.5		ns ns
t _h (H) t _h (L)	Hold time, High or Low CEP or CET to CP	Waveform 5	0 0			0 0		ns ns
t _w (H) t _w (L)	CP Pulse width, High or Low	Waveform 1	4.5 4.5			4.5 4.5		ns ns
t _w (L)	MR Pulse width, Low	Waveform 2	3.0			3.0		ns
t _{rec}	Recovery time, MR to CP	Waveform 2	4.0			4.5		ns

8

AC WAVEFORMS

٧м

t_{PLH}

t_{PHL}

t_W(H)

٧N

CP

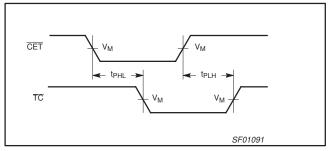
I/On

TC

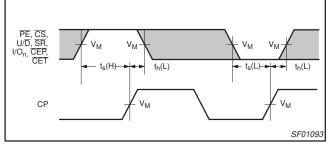
NOTE: For all waveforms $V_{M} = 1.5$ V. The shaded areas indicate when the input is permitted to change for predictable output performance.

t_W(L)

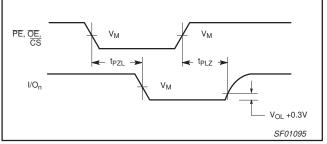
VM

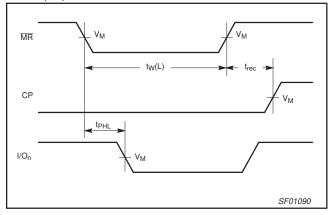

t_{PHI}

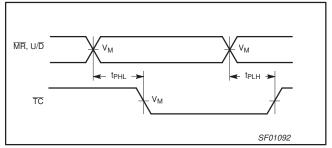
t_{PLH}

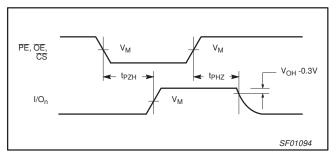

VM

1/f_{MAX}

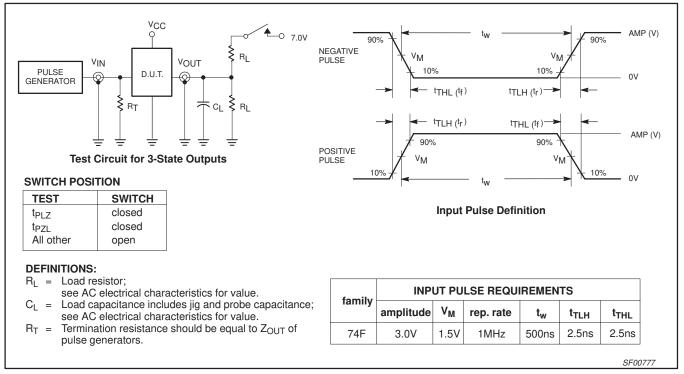


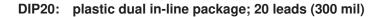

Waveform 3. Propagation Delay, CET Input to Terminal Count Output

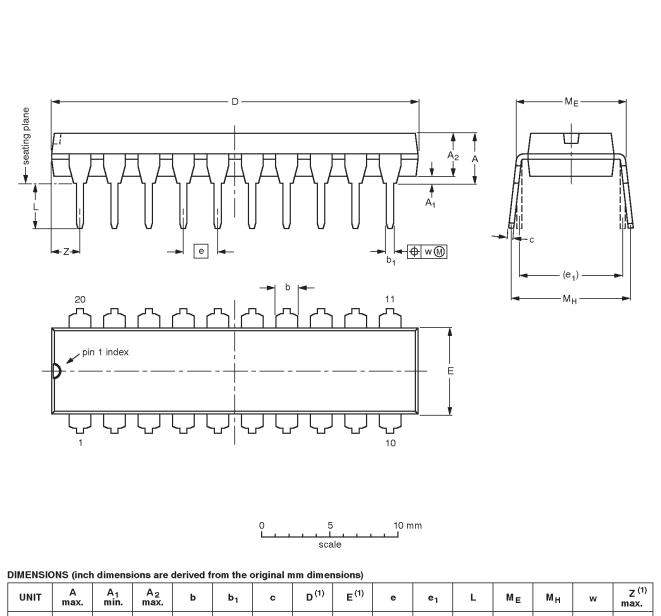

Waveform 5. Setup and Hold Times


Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time


Waveform 4. Propagation Delay, U/D and MR Inputs to Terminal Count Output




Waveform 6. 3-State Output Enable Time to High Level and Output Disable Time from High Level

74F579

TEST CIRCUIT AND WAVEFORMS

UNIT	Max.	A ₁ min.	M ₂ max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ΜE	М _Н	w
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1550E DATE
SOT146-1		MS-001	SC-603		-95-05-24 99-12-27

74F579

2.0

0.078

Product specification

8-bit bidirectional binary counter (3-State)

SO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1 D А Х /7 v = | v (M) A 20 Q pin 1 index D 10 detail X е + w M bp 5 10 mm 0 scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) А z ⁽¹⁾ E⁽¹⁾ D⁽¹⁾ θ UNIT Q ${\sf H}_{\sf E}$ L v w A₁ A_2 A_3 bp С е Lp У max. 0.30 2.45 0.49 0.32 13.0 10.65 0.9 7.6 1.1 1.1 2.65 0.25 1.27 0.25 0.25 0.1 $\mathsf{m}\mathsf{m}$ 1.4 0.36 10.00 1.0 0.4 0.10 2.25 12.6 7.4 0.4 0.23 8⁰ 00 0.419 0.043 0.51 0.30 0.035 0.012 0.096 0.019 0.013 0.043 0.10 inches 0.01 0.050 0.055 0.01 0.01 0.004 0.039 0.016 0.004 0.089 0.014 0.009 0.49 0.29 0.394 0.016 Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN **ISSUE DATE** VERSION PROJECTION IEC JEDEC EIAJ 97-05-22 SOT163-1 075E04 MS-013 \odot E 99-12-27

74F579

Product specification

13

NOTES

74F579

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 2001 All rights reserved. Printed in U.S.A.

Date of release: 01-01

Document order number:

9397 750 07887

Let's make things better.

