

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

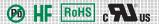
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



LoRho SMD PTC for Charging Cable Protection

Agency Approvals

AGENCY	AGENCY FILE NUMBER	AMPERE RANGE
c 'RL "us	E74889	4.5A
	Pending	Pending

Applications

 Over temperature (OT) protection for USB connectors and cables including:

Electrical Characteristics

- USB Type-C
- USB Micro-B
- USB-A

- Fast charging standards and protocols including:
 - USB Power Delivery
 (PD) †
 - Qualcomm Quick
 Charge (QC) †
 - Mediatek Pump Express (PE) †
 - Samsung Adaptive
 Fast Charging (AFC) [†]
- Huawei/HiSilicon Fast Charging Protocol (FCP) †

Description

The Littelfuse LoRho SMD PTC for Charging Cables provides protection from heat generated due to faults within the connector such as USB-C, microUSB, and many others.

As connectors get smaller, their pin-to-pin spacings are shrinking which increases the opportunity for debris such as dust, dirt, or water to collect causing a fault. These faults can generate a tremendous amount of heat which will damage charging cables, the devices they charge, or people using them.

Features

- SMD compatible with reflow soldering process
- Available in small 1206 and 1210 sizes
- \bullet Up to 12Vdc and 4.5A I_{hold}
- Ultra low internal resistance
- Reset automatically
- Halogen-free, lead-free and RoHS compliant

These charging protocols are the property of their respective owner.

Thermal Cut Off Thermal Cut Off Agency Resistance (TCO) - °C @ 3A Approvals (TCO) - °C @ 2A P_d^3 typ. V_{max}² (Vdc) I_{hold} (A) Part Number Marking (W) R_{min} Min Min c SN us Max Max Ρ nanoSMD350LR-C 3.50 12 50 75 65 85 1.0 0.004 0.018 nanoSMD400LR-C S 4.00 12 70 100 65 90 0.004 0.010 1.0 microSMD450LR-C 4.50 0.002 0.0085 S 12 110 100

Notes:

- I. I_{hold} = Hold current: maximum current device will pass without tripping in 20°C still air
- 2. V_{max} = Maximum voltage device can withstand without damage at rated current (I_{max})
- 3. P_d = Power dissipated from device when in the tripped state at 20°C still air 4. R_{min} = Minimum resistance of device in initial (un-soldered) state
- R_{Imax} = Maximum resistance of device at 20°C measured one hour after tripping or reflow Soldering of 260°C for 20 seconds

(Values specified were determined using PCBs with 0.115in x 1.0in ounce copper traces)

Caution: Operation beyond the specified rating may result in damage and possible arcing

TCO and Pd Testing Method:

Thermal Cut-Off Test-

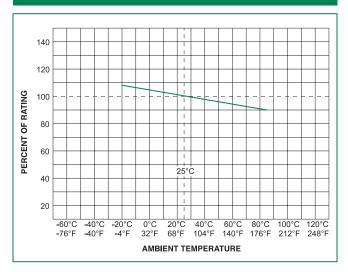
- Put the device into the thermostatic chamber controlled at room temperature or 25°C.
- Apply the specified current to the device, and increase the chamber temperature at the rate of 2°C per minute.
- Measure the device ambient temperature when the applied current has reduced to less than 20% of initial value.

Power Dissipation-

- Conduct thermal cut-off test at rated current/voltage.
- 2. After device trip, decrease the chamber temperature with keeping trip state
- Measure the tripped-state power dissipation when the device ambient temperature has reduced to 30°C or less.

[†] These charging protocols are the property of their respective owners

POLYSWITCH® Resettable PTCs


Surface Mount > LoRho Series

Temperature Rerating

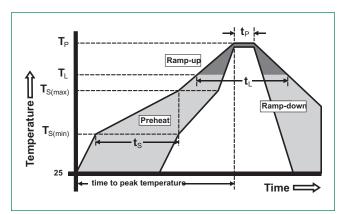
	Ambient OperatingTemperature									
	-20°C 0°C 20°C 60°C									
Part Number			Hold Current (A)							
nanoSMD350LR-C	4.80	4.00	3.50	1.90	1.30					
nanoSMD400LR-C	5.20	4.60	4.00	2.82	2.10					
microSMD450LR-C	6.20	5.50	4.50	3.30	2.30					

Note: The temperature rerating data is for reference only. Please contact Littelfuse technical support for detail temperature rerating information.

Temperature Derating Curve

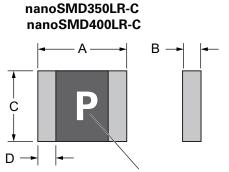
Environmental Specifications

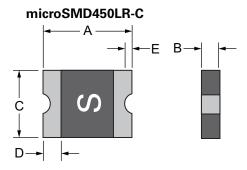
Operating Temperature	-20°C to +85°C
Maximum Device Surface Temperature in Tripped State	125°C
Passive Aging	+85°C, 1000 hours -/+10% typical resistance change
Humidity Aging	+85°C, 85% R.H.,100 hours -/+15% typical resistance change
Thermal Shock	MIL–STD–202, Method 215 No change
Vibration	MIL-STD-883, Method 2007, Condition A No change
Moisture Sensitivity Level	Level 2a, J-STD-020


Physical Specifications

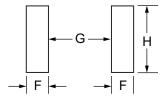
Terminal	Solder-Plated Copper
Materials	(Solder Material: Matte Tin (Sn))
Lead	Meets EIA Specification RS186-9E, ANSI/J-
Solderability	STD-002, Category 3

Soldering Parameters


Profile Fea	ature	Pb – Free assembly			
	-Temperature Min (T _{s(min)})	150°C			
Pre Heat	-Temperature Max (T _{s(max)})	200°C			
	-Time (min to max) (t _s)	60 – 120 seconds			
Average ra (T _L) to pea	amp up rate (Liquidus Temp ık	3°C/second max			
T _{S(max)} to T _l	- Ramp-up Rate	3°C/second max			
Reflow	-Temperature (T _L) (Liquidus)	217°C			
nellow	-Temperature (t _L)	60 – 150 seconds			
PeakTemp	perature (T _P)	260°C			
Time with	in 5°C of actual peak ure (t _p)	30 seconds max			
Ramp-dov	vn Rate	2°C/second max			
Time 25°C	to peakTemperature (T _P)	8 minutes max			



Notes


- All temperature refer to topside of the package, measured on the package body surface.
- If reflow temperature exceeds the recommended profile, devices may not meet the performance requirements.
- Recommended reflow methods: IR, vapor phase oven, hot air oven, N_2 environment for lead.
- Recommended maximum paste thickness is 0.25 mm (0.010 inch).
- Devices can be cleaned using standard industry methods and solvents.
- Devices can be reworked using the standard industry practices.

Dimensions

Solder Pad Layout

Marking code varies by device. See Electrical Characteristics table.

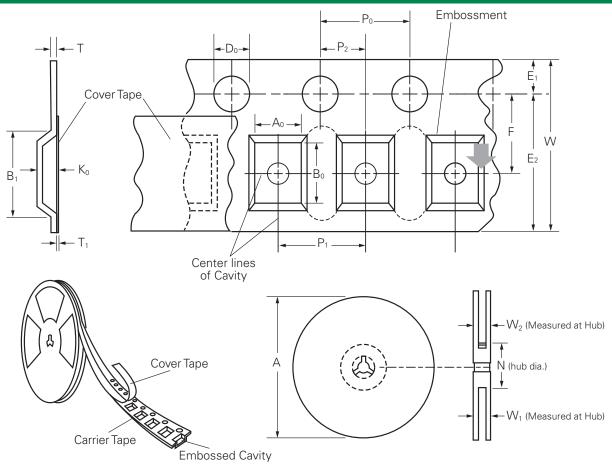
	Device Dimension										Solder Pad															
Part Number		ļ	4			В				C D					D E				ا	F	G		Н			
Part Number	in	ch	m	m	in	ch	m	m	in	ch	m	m	in	ch	m	m	in	ch	m	m	الم ماد		in ab		ماه سا	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	inch	mm	inch	111111	inch	1111111
nanoSMD350LR-C	0.12	0.13	3.00	3.43	0.02	0.03	0.60	0.80	0.05	0.07	1.37	1.85	0.01	0.03	0.25	0.75	-	-	-	-	0.04	1.10	0.08	2.00	0.07	1.75
nanoSMD400LR-C	0.12	0.13	3.00	3.43	0.02	0.03	0.60	0.80	0.05	0.07	1.37	1.85	0.01	0.03	0.25	0.75	-	-	-	-	0.04	1.10	0.08	2.00	0.07	1.75
microSMD450LR-C	0.12	0.13	3.00	3.43	0.02	0.03	0.60	0.80	0.09	0.11	2.35	2.80	0.01	0.03	0.25	0.75	0.003	-	0.076	-	0.04	1.00	0.08	2.00	0.10	2.65

POLYSWITCH® Resettable PTCs

Surface Mount > LoRho Series

Packaging

Part Number	Ordering	I _{HOLD} (A)	I _{HOLD} Code	Packaging Option	Quantity
nanoSMD350LR-C	RF4610-000	3.50	350		15,000
nanoSMD400LR-C	RF4611-000	4.00	400	Tape and Reel	15,000
microSMD450LR-C	RF2515-000	4.50	450		15,000


Installation and Handling Guidelines

- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire.
- These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration.
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices.
- These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses.

- Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.
- Hand-soldering of PTC devices on boards is generally not recommended. Users shall define and verify this process if needed.
- Consult Littelfuse when the device is to be applied with thermal processes other than reflow process on the circuit board, such as molding, encapsulation. User should evaluate molding materials used in the charging cable applications to ensure there are no adverse effect on the PTC devices.

Tape and Reel Specifications

Standard Pack Quantity: 3,000 pcs Minimum Order Quantity: 15,000 pcs

	nanoSMD350LR-C nanoSMD400LR-C	microSMD450LR-C
W	8.0 ± 0.30	8.0 ± 0.30
P ₀	4.0 ± 0.10	4.0 ± 0.10
P ₁	4.0 ± 0.10	4.0 ± 0.10
P ₂	2.0 ± 0.05	2.0 ± 0.05
A ₀	1.95 ± 0.10	2.9 ± 0.10
B ₀	3.50 + 0.1/-0.08	3.55 ± 0.10
B₁ max.	4.35	4.35
D ₀	1.55 ± 0.05	1.55 ± 0.05
F	3.50 ± 0.05	3.50 ± 0.05
E ₁	1.75 ± 0.10	1.75 ± 0.10
E ₂ min.	6.25	6.25
T max.	0.3	0.3
T ₁ max.	0.1	0.1
K ₀	0.89 ± 0.10	1.27 ± 0.10
A max.	179	179
N min.	53.5	53.5
W ₁	9.5 ± 0.5	9.5 ± 0.5
W₂ max.	15	15