Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # 2.5V/3.3V Differential 2:1 MUX to 4 LVPECL Fanout Buffer #### Description The NB3L8533 is a low skew 1:4 LVPECL Clock famout buffer designed explicitly for low output skew applications. The NB3L8533 features a multiplexed input which can be driven by either a differential or single-ended input to allow for the distribution of a lower speed clock along with the high speed system clock. The CLK_SEL pin will select the differential clock inputs, CLK and $\overline{\text{CLK}}$, when LOW (or left open and pulled LOW by the internal pull-down resistor). When CLK_SEL is HIGH, the Differential PCLK and $\overline{\text{PCLK}}$ inputs are selected. The common enable (CLK_EN) is synchronous so that the outputs will only be enabled/disabled when they are already in the LOW state. This avoids any chance of generating a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input. #### **Features** - 650 MHz Maximum Clock Output Frequency - CLK/CLK can Accept LVPECL, LVDS, HCSL, STTL and HSTL - PCLK/PCLK can Accept LVPECL, LVDS, CML and SSTL - Four Differential LVPECL Clock Outputs - 1.5 ns Maximum Propagation Delay - Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.630 V - LVCMOS Compatible Control Inputs - Selectable Differential Clock Inputs - Synchronous Clock Enable - 30 ps Max. Skew Between Outputs - -40°C to +85°C Ambient Operating Temperature Range - TSSOP-20 Package - These are Pb-Free Devices #### **Applications** - Computing and Telecom - Routers, Servers and Switches - Backplanes #### ON Semiconductor® www.onsemi.com CASE 948E = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package Figure 1. Simplified Logic Diagram of NB3L8533 #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 8 of this data sheet. Figure 2. Pinout Diagram (Top View) #### **Table 1. FUNCTIONS** | Inputs | | | Outputs | | | | |--------|---------|----------------------|-----------------|------|----------------|--| | CLK_EN | CLK_SEL | Input Function | Output Function | Qx | Qx | | | 0 | 0 | CLK input selected | Disabled | LOW | HIGH | | | 0 | 1 | PCLK Inputs Selected | Disabled | LOW | HIGH | | | 1 | 0 | CLK input selected | Enabled | CLK | Invert of CLK | | | 1 | 1 | PCLK Inputs Selected | Enabled | PCLK | Invert of PCLK | | ^{1.} After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show in Figure 3. #### **Table 2. PIN DESCRIPTION** | Pin Number | Name | I/O | Open
Default | Description | |------------|---------|-----------------------|-----------------|--| | 1 | VEE | Power | | Negative (Ground) Power Supply pin must be externally connected to power supply to guarantee proper operation. | | 2 | CLK_EN | LVCMOS/LVTTL
Input | Pull-up | Synchronized Clock Enable when HIGH. When LOW, outputs are disabled (Qx HIGH, Qx LOW) | | 3 | CLK_SEL | LVCMOS/LVTTL
Input | Pull-down | Clock Input Select (HIGH selects PCLK, LOW selects CLK input) | | 4 | CLK | Input | Pull-down | Non-inverted Differential Clock Input. Float open when unused. | | 5 | CLK | Input | Pull-up | Inverted Differential Clock Input. Float open when unused. | | 6 | PCLK | Input | Pull-down | Non-inverted Differential Clock Input. Float open when unused. | | 7 | PCLK | Input | Pull-up | Inverted Differential Clock Input. Float open when unused. | | 8 | NC | | | No Connect | | 9 | NC | | | No Connect | | 10 | VCC | Power | | Positive Power Supply pins must be externally connected to power supply to guarantee proper operation. | | 11 | Q3 | LVPECL Output | | Complement Differential Output | | 12 | Q3 | LVPECL Output | | True Differential Output | | 13 | VCC | Power | | Positive Power Supply pins must be externally connected to power supply to guarantee proper operation. | | 14 | Q2 | LVPECL Output | | Complement Differential Output | | 15 | Q2 | LVPECL Output | | True Differential Output | | 16 | Q1 | LVPECL Output | | Complement Differential Output | | 17 | Q1 | LVPECL Output | | True Differential Output | | 18 | VCC | Power | | Positive Power Supply pins must be externally connected to power supply to guarantee proper operation. | | 19 | Q0 | LVPECL Output | | Complement Differential Output | | 20 | Q0 | LVPECL Output | | True Differential Output | Table 3. ATTRIBUTES (Note 2) | Character | Value | | | | | |--|------------------------------------|----------------------|--|--|--| | ESD Protection Human Body Model Machine Model | | > 2 kV
> 200 V | | | | | R _{PU} – Pull–up Resistor | R _{PU} – Pull–up Resistor | | | | | | R _{PD} – Pull–down Resistor | 50 kΩ | | | | | | Moisture Sensitivity (Note 2) | TSSOP-20 | Level 1 | | | | | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | | | Transistor Count | 289 | | | | | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | | | | | ^{2.} For additional information, see Application Note AND8003/D. **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|-----------------------|----------------------|-------------------------------|----------| | V _{CC} | Positive Power Supply Voltage | V _{EE} = 0 V | | 4.6 | V | | VI | Input Voltage | V _{EE} = 0 V | $V_{I} \leq V_{CC}$ | -0.5 to V _{CC} + 0.5 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-20
TSSOP-20 | 140
50 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-20 | 23 to 41 | °C/W | | T _{sol} | Wave Solder | | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 5. DC CHARACTERISTICS $V_{CC} = 2.375 \text{ V}$ to 3.630 V; $V_{EE} = 0 \text{ V}$; $T_{A} = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ (Note 3) | Symbol | Characteristic | Min | Тур | Max | Unit | | |--------------------|--|--------------------------|----------------------|-----|--|----| | POWER SI | JPPLY | | <u>l</u> | | | | | V _{CC} | Power Supply Voltage | | 2.375 | | 3.630 | V | | I _{EE} | Power Supply Current (Outputs Open) | | | | 40 | mA | | LVPECL O | UTPUTS (Note 4) | | • | | • | | | V _{OH} | Output HIGH Voltage | | V _{CC} -1.4 | | V _{CC} -0.9 | V | | V _{OL} | Output LOW Voltage | | V _{CC} -2.0 | | V _{CC} -1.7 | V | | V _{SWING} | Output Voltage Swing, Peak-to-Peak | | 0.6 | | 1.0 | V | | DIFFEREN | TIAL INPUTS DRIVEN DIFFERENTIALLY (see Figu | re 5) (Note 7) | | | | | | V_{IHD} | Differential Input HIGH Voltage | CLK
PCLK | 0.5
1.5 | | V _{CC} -0.85 | V | | V _{ILD} | Differential Input LOW Voltage | CLK
PCLK | 0
0.5 | | V _{IHD} -0.15
V _{IHD} -0.30 | V | | V _{CMR} | Common Mode Input Voltage; (Note 8) | CLK/CLKb
PCLK/PCLKb | 0.5
1.5 | | V _{CC} -0.85 | V | | V _{ID} | Differential Input Voltage (V _{IHD} -V _{ILD}) | CLK/CLKb
PCLK/PCLKb | 0.15
0.3 | | 1.3
1.0 | V | | I _{IH} | Input HIGH Current V _{IN} = V _{CC} = 3.630 V | CLK, PCLK
CLKb, PCLKb | | | 150
5 | μΑ | | I _{IL} | Input LOW Current V _{IN} = 0 V, V _{CC} = 3.630 V | CLK, PCLK
CLKb, PCLKb | –5
–150 | | | μΑ | | LVCMOS/L | VTTL INPUTS (CLK_EN, CLK_SEL) | | | | | | | V _{IH} | Input HIGH Voltage | | 2.0 | | V _{CC} +0.3 | V | | V _{IL} | Input LOW Voltage | | -0.3 | | 0.8 | V | | I _{IH} | Input HIGH Current V _{IN} = V _{CC} = 3.630 V | CLK_EN
CLK_SEL | | | 5
150 | μΑ | | I _{IL} | Input Low Current V _{IN} = 0 V, V _{CC} = 3.630 V | CLK_EN
CLK_SEL | –150
–5 | | | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - specification limit values are applied individually under normal operating cond 3. Input and Output parameters vary 1:1 with V_{CC} . 4. LVPECL outputs loaded with 50 Ω to V_{CC} 2 V for proper operation. 5. V_{IH} , V_{IL} , V_{th} and V_{ISE} parameters must be complied with simultaneously. 6. V_{th} is applied to the complementary input when operating in single–ended mode. 7. V_{IHD} , V_{ILD} , V_{ID} and V_{CMR} parameters must be complied with simultaneously. 8. The common mode voltage is defined as V_{IH} . Table 6. AC CHARACTERISTICS, $V_{CC} = 2.375 \text{ V to } 3.630 \text{ V}$, $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C (Note 9)}$ | Symbol | Characteristic | | | Min | Тур | Max | Unit | |--|--|---|------------------------------------|-----|--|------|------------| | f_{MAX} | Maximum Input Clock Frequency: V _{OUTpp} ≥ 300 mV | | | | | 650 | MHz | | Φ_{N} | Phase Noise, f _C = 156.25 MHz | 100 Hz
1 kHz
10 kHz
100 kHz
1 MHz
10 MHz
20 MHz | Offset from Carrier | | -124.4
-136.1
-144.2
-153.3
-156.2
-156.2
-156.4 | | dBc/
Hz | | t _{PLH} ,
t _{PHL} | Propagation Delay to Differential Outputs, @ 50 MHz (Figures 6 and 7) ($V_{CC} = 3.3 \text{ V}$) | Note 10
Note 11 | CLK/CLK to Q/Q
PCLK/PCLK to Q/Q | 1.0 | | 1.55 | ns | | t∫⊕N | Additive Phase Jitter, RMS; f _C = 156.25 MHz,
Integration Range: 12 kHz – 20 MHz | | | | 0.05 | | ps | | tsk(o) | Output-to-output skew; (Note 12) | | | | | 30 | ps | | tsk (pp) | Part-to-Part Skew; (Note 13) | | | | | 150 | ps | | V _{INpp} | Input Voltage Swing/Sensitivity (Differential Configuration) (Note 15) | | | 150 | | 1300 | mV | | t _r /t _f | Output rise and fall times, 20% to 80%, @ 50 MHz $Q_n, \overline{Q_n}$ | | | 250 | | 600 | ps | | ODC | Output Clock Duty Cycle | | | 47 | | 53 | % | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. All parameters measured at f_{MAX} unless noted otherwise. - The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter - 9. Measured using a V_{INPPmin} source, Reference Duty Cycle = 50% duty cycle clock source. All output loading with external 50 Ω to V_{CC} 2 V. - 10. Measured from the differential input crossing point to the differential output crossing point. - 11. Measured from V_{CC}/2 input crossing point to the differential output crossing point. - 12. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. - 13. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. - 14. Output voltage swing is a single-ended measurement operating in differential mode. - 15. Input voltage swing is a single-ended measurement operating in differential mode. Figure 3. Typical Phase Noise Plot at f_{carrier} = 156.25 MHz at an Operating Voltage of 3.3 V, Room Temperature The above phase noise data was captured using Agilent E5052A/B. The data displays the input phase noise and output phase noise used to calculate the additive phase jitter at a specified integration range. The RMS Phase Jitter contributed by the device (integrated between 12 kHz and 20 MHz) is 51.76 fs. The additive phase jitter performance of the fanout buffer is highly dependent on the phase noise of the input source. To obtain the most accurate additive phase noise measurement, it is vital that the source phase noise be notably lower than that of the DUT. If the phase noise of the source is greater than the device under test output, the source noise will dominate the additive phase jitter calculation and lead to an artificially low result for the additive phase noise measurement within the integration range. RMS additive jitter = $$\sqrt{\text{RMS phase jitter of output}^2 - \text{RMS phase jitter of input}^2}$$ $51.76 \text{ fs} = \sqrt{100.24 \text{ fs}^2 - 85.84 \text{ fs}^2}$ Figure 4. VCMR Diagram Figure 5. Differential Inputs Driven Differentially Figure 6. AC Reference Measurement Figure 7. CLK_SEL to Qx Timing Diagram Figure 8. Differential Input Driven Single-ended #### Differential Clock Input to Accept Single-ended Input Figure 8 shows how the CLK input can be driven by a single–ended Clock signal. C1 is connected to the V_{ref} node as a bypass capacitor. Locate these components close the device pins. R1 and R2 must be adjusted to position V_{ref} to the center of the input swing on CLK. Figure 9. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|-----------------------|-----------------------| | NB3L8533DTG | TSSOP-20
(Pb-Free) | 75 Units / Rail | | NB3L8533DTR2G | TSSOP-20
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **PACKAGE DIMENSIONS** #### TSSOP-20 CASE 948E-02 **ISSUE C** 0.100 (0.004) -T- SEATING PLANE - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | | |-----|----------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | | 7 | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 BSC | | 0.252 BSC | | | | M | 0° | 8° | 0° | 8° | | *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Japan Customer Focus Cente Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative