

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver

Description

The NB3N200 is a pure 3.3 V supply differential Multipoint Low Voltage (M–LVDS) line Driver and Receiver. NB3N200S is TIA/EIA–899 compliant. NB3N200S offers the Type 1 receiver threshold at 0.0 V.

These devices has a Type-1 receiver that detect the bus state with as little as 50 mV of differential input voltage over a common-mode voltage range of -1 V to 3.4 V. The Type-1 receivers have near zero thresholds (±50 mV) and exhibit 25 mV of differential input voltage hysteresis to prevent output oscillations with slowly changing signals or loss of input.

NB3N200S supports Simplex or Half Duplex bus configurations.

ON Semiconductor®

www.onsemi.com

SOIC-8 D SUFFIX CASE 751

MARKING

NB20x = Specific Device Code

= 0, 2, 4, 5

A = Assembly Location

Y = Year
WW = Work Week
G or • = Pb-Free Package

dimensions section on page 17 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information in the package

Features

- Low–Voltage Differential 30 Ω to 55 Ω Line Drivers and Receivers for Signaling Rates Up to 200 Mbps
- Type-1 Receivers Incorporate 25 mV of Hysteresis
- Meets or Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
- Controlled Driver Output Voltage Transition Times for Improved Signal Quality
- -1 V to 3.4 V Common–Mode Voltage Range Allows Data Transfer With up to 2 V of Ground Noise
- Bus Pins High Impedance When Disabled or $V_{CC} \le$ 1.5 V
- M-LVDS Bus Power Up/Down Glitch Free
- Operating range: $V_{CC} = 3.3 \pm 10\% \text{ V}(3.0 \text{ to } 3.6 \text{ V})$
- Operation from -40°C to 85°C.

- Pb-Free SOIC 8 Package
- These are Pb-Free Devices

Applications

- Low-Power High-Speed Short-Reach Alternative to TIA/EIA-485
- Backplane or Cabled Multipoint Data and Clock Transmission
- Cellular Base Stations
- Central-Office Switches
- Network Switches and Routers

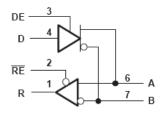


Figure 1. Logic Diagrams

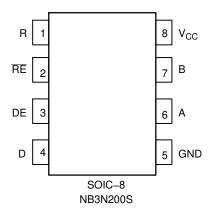


Figure 2. Pinout Diagrams (Top View)

Table 1. PIN DESCRIPTION SOIC-8

Number	Name	I/O Type	Open Default	Description
1	R	LVCMOS Output		Receiver Output Pin
2	RE	LVCMOS Input	High	Receiver Enable Input Pin (LOW = Active, HIGH = High Z Output)
3	DE	LVCMOS Input	Low	Driver Enable Input Pin (LOW = High Z Output, HIGH = Active)
4	D	LVCMOS Input		Driver Output Pin
5	GND			Ground Supply pin. Pin must be externally connected to power supply to guarantee proper operation.
6	А	M–LVDS Input / Output		Transceiver Invert Input / Output Pin
7	В	M–LVDS Input / Output		Transceiver True Input / Output Pin
8	VCC			Power Supply pin. Pin must be externally connected to power supply to guarantee proper operation.

Table 2. DEVICE FUNCTION TABLE

	Inputs		Output		
	V _{ID} = V _A – V _B		R		
	$V_{ID} \ge 50 \text{ mV}$	L	Н		
TVDE 1 Desciver (ND2N200)	$-50 \text{ mV} < V_{\text{ID}} < 50 \text{ mV}$	L	?		
TYPE 1 Receiver (NB3N200)	$V_{ID} \le -50 \text{ mV}$	L	L		
	Х	Н	Z		
	Х	Open	Z		
	Open	L	?		
	Input	Enable	Output		
	D	DE	A / Y	B / Z	
	L	Н	L	Н	
DRIVER	Н	Н	Н	L	
	Open	Н	L	Н	
	Х	Open	Z	Z	
	Х	L	Z	Z	

H = High, L = Low, Z = High Impedance, X = Don't Care, ? = Indeterminate

Table 3. ATTRIBUTES (Note 1)

	Characteristics		Value
Internal Input Pu	ıllup Resistor	50 kΩ	
Internal Input Pu	ılldown Resistor	50 kΩ	
	Human Body Model (JEDEC Standard 22, Method A114–A) A, B, Y, Z All Pins		±6 kV ±2 kV
ESD Protection	Machine Model All Pins		±200 V
	Charged –Device Model (JEDEC Standard 22, Method C101)		±1500 V
Moisture Sensiti	vity, Indefinite Time Out of Drypack (I	Note 1)	Level 1
Flammability Ra Oxygen Index	ting	UL-94 V-0 @ 0.125 in 28 to 34	
Transistor Coun	t	917 Devices	
Meets or exceed	ds JEDEC Spec EIA/JESD78 IC Latc	hup Test	

^{1.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Supply Voltage			$-0.5 \le V_{CC} \le 4.0$	V
V _{IN}	Input Voltage	D, DE, RE		$-0.5 \le V_{IN} \le 4.0$	V
		A, B (200, 204)		$-1.8 \leq V_{IN} \leq 4.0$	
		A, B (202, 205)		$-4.0 \leq V_{IN} \leq 6.0$	1 1
l _{OUT}	Output Voltage	R Y, Z, A, B		$-0.3 \le I_{OUT} \le 4.0$ $-1.8 \le I_{OUT} \le 4.0$	V
T _A	Operating Temperature Range, Industrial			-40 to ≤ +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 3)	SOIC-8	41 to 44	°C/W
T _{sol}	Wave Solder			265	°C
P _D	Power Dissipation (Continuous)	SOIC-8	T _A = 25°C 25°C < T _A < 85°C T _A = 85°C	725 5.8 377	mW mW/°C mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. DC CHARACTERISTICS VCC = $3.3 \pm 10\%$ V(3.0 to 3.6 V), GND = 0 V, $T_A = -40$ °C to +85°C (See Notes 4, 5)

Symbol	Characteristic	Min	Тур	Max	Unit
ICC	Power Supply Current Receiver Disabled Driver Enabled RE and DE at V_{CC} , $R_L = 50~\Omega$, All others open Driver and Receiver Disabled RE at VCC, DE at 0 V, $R_L = N_0 L_0$, All others open Driver and Receiver Enabled RE at 0 V, DE at V_{CC} , $R_L = 50~\Omega$, All others open Receiver Enabled Driver Disabled RE at 0 V, DE at 0 V, $R_L = 50~\Omega$, All others open		13 1 16	22 4 24 13	mA
V _{IH}	Input HIGH Voltage	2		V_{CC}	V
V_{IL}	Input LOW Voltage	GND		0.8	V
VBUS	Voltage at any bus terminal VA, VB, VY or VZ	-1.4		3.8	V
VID	Magnitude of differential input voltage	0.05		V_{CC}	

DRIVER

^{2.} Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.

3. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

 $\textbf{Table 5. DC CHARACTERISTICS} \ \ VCC = 3.3 \pm 10\% \ \ V(\ 3.0 \ to \ 3.6 \ V), \ GND = 0 \ \ V, \ T_A = -40^{\circ}C \ \ to \ +85^{\circ}C \ \ (See \ Notes \ 4, \ 5)$

Symbol	Characteristic	Min	Тур	Max	Unit
DRIVER				•	
V _{AB} / V _{YZ}	Differential output voltage magnitude (see Figure 4)	480		650	mV
$\Delta V_{AB} / \Delta V_{YZ} $	Change in Differential output voltage magnitude between logic states (see Figure 4)	-50		50	mV
V _{OS(SS)}	Steady state common mode output voltage (see Figure 5)	0.8		1.2	V
$\Delta V_{OS(SS)}$	Change in Steady state common mode output voltage between logic states (see Figure 5)			50	mV
V _{OS(PP)}	Peak-to-peak common-mode output voltage (see Figure 5)			150	mV
V _{YOC} / V _{AOC}	Maximum steady-state open-circuit output voltage (see Figure 9)	0		2.4	V
V _{ZOC} / V _{BOC}	Maximum steady-state open-circuit output voltage (see Figure 9)			2.4	V
$V_{P(H)}$	Voltage overshoot, low-to-high level output (see Figure 7)			1.2 V _{SS}	V
V _{P(L)}	Voltage overshoot, high-to-low level output (see Figure 7)	-0.2 V _{SS}			V
I _{IH}	High-level input current (D, DE) V _{IH} = 2 V	0		10	uA
I _{IL}	Low-level input current (D, DE) V _{IL} = 0.8 V	0		10	uA
Jl _{OS} J	Differential short-circuit output current magnitude (see Figure 6)			24	mA
l _{OZ}	High–impedance state output current (driver only) $-1.4~V \le (VY~or~VZ) \le 3.8~V,~other~output~at~1.2~V$	–15		10	uA
I _{O(OFF)}	Power–off output current (0 V \leq V _{CC} \leq 1.5 V) -1.4 V \leq (VY or VZ) \leq 3.8 V, other output at 1.2 V	-10		10	uA
C _Y / C _Z	Output Capacitance VI = $0.4 \sin(30E^6\pi t) + 0.5 \text{ V}$, other outputs at 1.2 V using HP4194A impedance analyzer (or equivalent)		3		pF
C_{YZ}	Differential Output Capacitance Vab = 0.4 sin($30E^6\pi t$) V, other outputs at 1.2 V using HP4194A impedance analyzer (or equivalent)			2.5	pF
$C_{Y/Z}$	Output Capacitance Balance, (Cy/Cz)	99		101	%
RECEIVER					•
V _{IT+}	Positive-going Differential Input voltage Threshold (See Figure 11 & Table 8) Type 1 Type 2			50 150	mV
V _{IT-}	Negative-going Differential Input voltage Threshold (See Figure 11 & Table 8) Type 1 Type 2	-50 50			mV
V _{HYS}	Differential Input Voltage Hysteresis (See Figure 11 and Table 2) Type 1 Type 2		25 0		mV
VOH	High-level output voltage (IOH = -8 mA	2.4			V
VOL	Low-level output voltage (IOL = 8 mA)			0.4	V
I _{IH}	RE High-level input current (VIH = 2 V)	-10		0	μΑ
I _{IL}	RE Low-level input current (VIL = 0.8 V)	-10		0	μΑ
I _{OZ}	High-impedance state output current (VO = 0 V of 3.6 V)	-10		15	μΑ
C _A / C _B	Input Capacitance VI = 0.4 $sin(30E^6\pi t)$ + 0.5 V, other outputs at 1.2 V using HP4194A impedance analyzer (or equivalent)		3		pF
C _{AB}	Differential Input Capacitance VAB = $0.4 \sin(30E^6\pi t)$ V, other outputs at 1.2 V using HP4194A impedance analyzer (or equivalent)			2.5	pF
C _{A/B}	Input Capacitance Balance, (CA/CB)	99		101	%
			_		

Table 5. DC CHARACTERISTICSVCC = $3.3 \pm 10\%$ V(3.0 to 3.6 V), GND = 0 V, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C (See Notes 4, 5)

Characteristic	Min	Typ (Note 5)	Max	Unit
T AND OUTPUT				
Input Current Receiver or Transceiver with Driver Disabled				uA
$V_{A} = 3.8 \text{ V}, V_{B} = 1.2 \text{ V} \\ V_{A} = 0.0 \text{ V or } 2.4 \text{ V}, V_{B} = 1.2 \text{ V} \\ V_{A} = -1.4 \text{ V}, V_{B} = 1.2 \text{ V}$	0 -20 -32		32 20 0	
Input Current Receiver or Transceiver with Driver Disabled				uA
$V_{B} = 3.8 \text{ V}, V_{A} = 1.2 \text{ V}$ $V_{B} = 0.0 \text{ V} \text{ or } 2.4 \text{ V}, V_{A} = 1.2 \text{ V}$ $V_{B} = -1.4 \text{ V}, V_{A} = 1.2 \text{ V}$	0 -20 -32		32 20 0	
Differential Input Current Receiver or Transceiver with driver disabled (I_A-I_B) $V_A=V_B\;,\;-1.4\leq V_A\leq 3.8\;V$	-4		4	uA
Input Current Receiver or Transceiver Power Off 0V ≤ V _{CC} ≤ 1.5 and:	0		22	uA
$V_A = 3.6 \text{ V}, V_B = 1.2 \text{ V}$ $V_A = 0.0 \text{ V or } 2.4 \text{ V}, V_B = 1.2 \text{ V}$ $V_A = -1.4 \text{ V}, V_B = 1.2 \text{ V}$	-20 -32		20 0	
Input Current Receiver or Transceiver Power Off 0V ≤ V _{CC} ≤ 1.5 and:				uA
$V_{B} = 3.8 \text{ V}, V_{A} = 1.2 \text{ V}$ $V_{B} = 0.0 \text{ V} \text{ or } 2.4 \text{ V}, V_{A} = 1.2 \text{ V}$ $V_{B} = -1.4 \text{ V}, V_{A} = 1.2 \text{ V}$	0 -20 -32		32 20 0	
Receiver Input or Transceiver Input/Output Power Off Differential Input Current; (I _A -I _B)				uA
$V_A = V_B$, $0 \le V_{CC} \le 1.5 \text{ V}$, $-1.4 \le V_A \le 3.8 \text{ V}$	-4		4	
Transceiver Input Capacitance with Driver Disabled Va = $0.4 \sin(30E^6\pi t) + 0.5 \text{ V}$ using HP4194A impedance analyzer (or equivalent); V _B = 1.2 V		5		pF
Transceiver Input Capacitance with Driver Disabled VB = $0.4 \sin(30E^6\pi t) + 0.5 \text{ V}$ using HP4194A impedance analyzer (or equivalent); $V_A = 1.2 \text{ V}$		5		pF
Transceiver Differential Input Capacitance with Driver Disabled VA = $0.4 \sin(30E^6\pi t) + 0.5 \text{ V}$ using HP4194A impedance analyzer (or equivalent); $V_B = 1.2 \text{ V}$			3.0	pF
Transceiver Input Capacitance Balance with Driver Disabled, (CA/CB)	99		101	%
	Input Current Receiver or Transceiver with Driver Disabled $V_A = 3.8 \text{ V, } V_B = 1.2 \text{ V} \\ V_A = 0.0 \text{ V or } 2.4 \text{ V, } V_B = 1.2 \text{ V} \\ V_A = -1.4 \text{ V, } V_B = 1.2 \text{ V} \\ V_A = -1.4 \text{ V, } V_B = 1.2 \text{ V} \\ V_B = 0.0 \text{ V or } 2.4 \text{ V, } V_A = 1.2 \text{ V} \\ V_B = 0.0 \text{ V or } 2.4 \text{ V, } V_A = 1.2 \text{ V} \\ V_B = 0.0 \text{ V or } 2.4 \text{ V, } V_A = 1.2 \text{ V} \\ V_B = -1.4 \text{ V, } V_A = 1.2 \text{ V} \\ V_B = -1.4 \text{ V, } V_A = 1.2 \text{ V} \\ V_B = -1.4 \text{ V, } V_A = 1.2 \text{ V} \\ V_A = V_B, -1.4 \leq V_A \leq 3.8 \text{ V} \\ V_A = 0.0 \text{ V or } 2.4 \text{ V, } V_B = 1.2 \text{ V} \\ V_A = 0.0 \text{ V or } 2.4 \text{ V, } V_B = 1.2 \text{ V} \\ V_A = -1.4 \text{ V, } V_B = 1.2 \text{ V} \\ V_A = -1.4 \text{ V, } V_B = 1.2 \text{ V} \\ V_B = 0.0 \text{ V or } 2.4 \text{ V, } V_B = 1.2 \text{ V} \\ V_B = 0.0 \text{ V or } 2.4 \text{ V, } V_A = 1.2 \text{ V} \\ V_B $	Input Current Receiver or Transceiver with Driver Disabled $\begin{array}{c} V_A = 3.8 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_A = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_A = -1.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_A = -1.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = -1.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = -1.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = -1.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = -1.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = -1.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_A = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_A = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_A = -1.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_A = -1.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_A = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_B = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ V_B = 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V}, \ V_A = 1.2 \ \text{V} \\ 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V} \ \text{or} \ 2.4 \ \text{V} \\ 0.0 \ \text{V} \ \text{or} \ 2.4 \ \text{V} \ \text{or} \ 2.4 \ \text{V} \ \text{or} \ 2.4 \ \text{v} \ \text{or} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c } \hline \textbf{Characteristic} & \textbf{Min} & (Note 5) & \textbf{Max} \\ \hline \textbf{AND OUTPUT} \\ \hline \\ \hline \textbf{Input Current Receiver or Transceiver with Driver Disabled} \\ \hline \textbf{V}_{A} = 3.8 \text{ V, V}_{B} = 1.2 \text{ V} & 0 & 32 & 20 & 0 \\ \hline \textbf{V}_{A} = 0.0 \text{ V or } 2.4 \text{ V, V}_{B} = 1.2 \text{ V} & 0 & 32 & 20 & 0 \\ \hline \textbf{V}_{A} = -1.4 \text{ V, V}_{B} = 1.2 \text{ V} & 0 & 32 & 20 & 0 \\ \hline \textbf{Input Current Receiver or Transceiver with Driver Disabled} \\ \hline \textbf{V}_{B} = 3.8 \text{ V, V}_{A} = 1.2 \text{ V} & 0 & 32 & 20 & 0 \\ \hline \textbf{V}_{B} = 0.0 \text{ V or } 2.4 \text{ V, V}_{A} = 1.2 \text{ V} & -20 & 20 & 0 \\ \hline \textbf{Differential Input Current Receiver or Transceiver with driver disabled (I_{A}-I_{B})} & V_{A} = V_{B} - 1.4 \text{ V, V}_{A} = 1.2 \text{ V} & 0 & 32 & 0 \\ \hline \textbf{Differential Input Current Receiver or Transceiver with driver disabled (I_{A}-I_{B})} & V_{A} = 0.0 \text{ V or } 2.4 \text{ V, V}_{B} = 1.2 \text{ V} & 0 & 32 & 20 \\ \hline \textbf{V}_{A} = 0.0 \text{ V or } 2.4 \text{ V, V}_{B} = 1.2 \text{ V} & 0 & 32 & 20 \\ \hline \textbf{V}_{A} = 0.0 \text{ V or } 2.4 \text{ V, V}_{B} = 1.2 \text{ V} & -20 & 32 & 20 \\ \hline \textbf{V}_{B} = 1.4 \text{ V, V}_{A} = 1.2 \text{ V} & -32 & 0 & 0 \\ \hline \textbf{Input Current Receiver or Transceiver Power Off 0V} \leq \textbf{V}_{CC} \leq 1.5 \text{ and:} & 0 & 32 & 20 & 20 \\ \hline \textbf{V}_{B} = 3.8 \text{ V, V}_{B} = 1.2 \text{ V} & -20 & 32 & 20 & 20 \\ \hline \textbf{V}_{B} = 0.0 \text{ V or } 2.4 \text{ V, V}_{A} = 1.2 \text{ V} & -20 & 32 & 20 \\ \hline \textbf{V}_{B} = 0.4 \text{ V, V}_{A} = 1.2 \text{ V} & -32 & 0 & 0 \\ \hline \textbf{Receiver Input or Transceiver Input/Output Power Off Differential Input Current; (I_{A}-I_{B})} & -20 & -32 & 0 & 0 \\ \hline \textbf{Receiver Input Capacitance with Driver Disabled Va} = 0.4 \sin(30E^{B}\pi t) + 0.5 \text{ V using} \\ \textbf{HP4194A impedance analyzer (or equivalent); V}_{B} = 1.2 \text{ V} & -20 & 3.0 \\ \hline \textbf{So V using HP4194A impedance analyzer (or equivalent); V}_{A} = 1.2 \text{ V} & -20 & 3.0 \\ \hline \textbf{So V using HP4194A impedance analyzer (or equivalent); V}_{A} = 1.2 \text{ V} & -20 & 3.0 \\ \hline \textbf{So V using HP4194A impedance analyzer (or equivalent); V}_{A} = 1.2 \text{ V} & -20 & 3.0 \\ \hline \textbf{So V using HP4194A impedance analyzer (or equivalent); V}_{A} = 1.2 \text{ V} & -20 & 3.0 \\ \hline So V$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Table 6. DRIVER AC CHARACTERISTICSVCC = $3.3 \pm 10\%$ V(3.0 to 3.6 V), GND = 0 V, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (Note 6)

Symbol	Characteristic	Min	Тур	Max	Unit
t _{PLH} / t _{PHL}	Propagation Delay (See Figure 7)	1.0		2.4	ns
t _{PHZ} / t _{PLZ}	Disable Time HIGH or LOW state to High Impedance (See Figure 8)			7	ns
t _{PZH} / t _{PZL}	Enable Time High Impedance to HIGH or LOW state (See Figure 8)			7	ns
t _{SK(P)}	Pulse Skew (t _{PLH} - t _{PHL}) (See Figure 7)		0	150	ps
t _{SK(PP)}	Device to Device Skew similar path and conditions (See Figure 7)			0.9	ns
t _{JIT(PER)}	Period Jitter RMS, 100 MHz (Source tr/tf 0.5 ns, 10 and 90 % points, 30k samples. Source jitter de-embedded from Output values) (See Figure 10)			3	ps
t _{JIT(PP)}	Peak-to-peak Jitter, 200 Mbps 2 ¹⁵ –1 PRBS (Source tr/tf 0.5 ns, 10 and 90% points, 100k samples. Source jitter de-embedded from Output values) (See Figure 10)			150	ps
tr / tf	Differential Output rise and fall times (See Figure 7)	1		1.6	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

^{4.} See Figure 3. DC Measurements reference.

^{5.} Typ value at 25°C and 3.3 VCC supply voltage.

^{6.} Typ value at 25°C and 3.3 $\ensuremath{V_{CC}}$ supply voltage.

Table 7. RECEIVER AC CHARACTERISTICS VCC = $3.3 \pm 10\%$ V(3.0 to 3.6 V), GND = 0 V, $T_A = -40$ °C to +85°C (Note 7)

Symbol	Characteristic	Min	Тур	Max	Unit
t _{PLH} / t _{PHL}	Propagation Delay (See Figure 12)	2	4	6	ns
t _{PHZ} / t _{PLZ}	Disable Time HIGH or LOW state to High Impedance (See Figure 13)			10	ns
t _{PZH} / t _{PZL}	Enable Time High Impedance to HIGH or LOW state (See Figure 13)			15	ns
t _{SK(P)}	Pulse Skew ($ t_{PLH} - t_{PHL} $) (See Figure 12) $C_L = 5 \text{ pF}$ Type 1 Type 2		100 300	300 500	ps
t _{SK(PP)}	Device to Device Skew similar path and conditions (See Figure 12) $C_L = 5 pF$			1	ns
t _{JIT(PER)}	Period Jitter RMS, 100 MHz (Source: VID = 200 mV $_{pp}$ for 201 and 203, VID = 400 mV $_{pp}$ for 206 and 207, V $_{CM}$ =1 V, tr/tf 0.5 ns, 10 and 90 % points, 30k samples. Source jitter de–embedded from Output values) (See Figure 14)			7	ps
t _{JIT(PP)}	Peak-to-peak Jitter, 200 Mbps 2 ¹⁵ –1 PRBS (Source tr/tf 0.5 ns, 10% and 90% points, 100k samples. Source jitter de-embedded from Output values) (See Figure 14) Type 1 Type 2		300 450	700 800	ps
tr / tf	Differential Output rise and fall times (See Figure 12) C _L = 15 pF	1		2.3	ns

^{7.} Typ value at 25°C and 3.3 VCC supply voltage. .

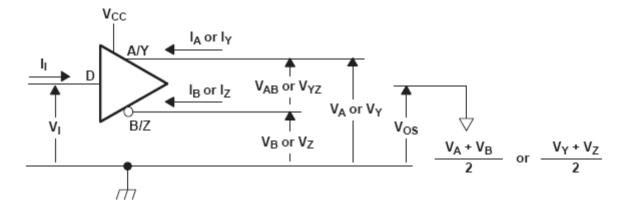
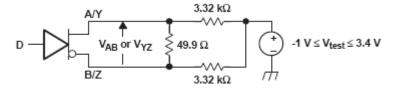
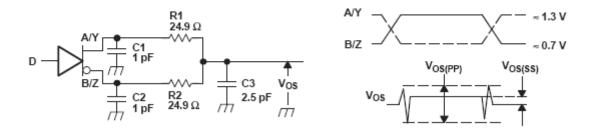




Figure 3. Driver Voltage and Current Definitions

A. All resistors are 1% tolerance.

Figure 4. Differential Output Voltage Test Circuit

- A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_r \le 1$ ns, pulse frequency = 500 kHz, duty cycle = $50 \pm 5\%$.
- B. C1, C2 and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are 20% tolerance.
- C. R1 and R2 are metal film, surface mount, 1% tolerance, and located within 2 cm of the D.U.T.
- D. The measurement of Vos(PP) is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 5. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

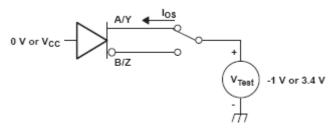
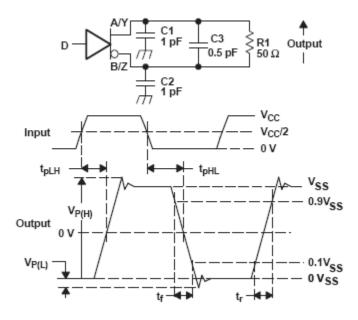
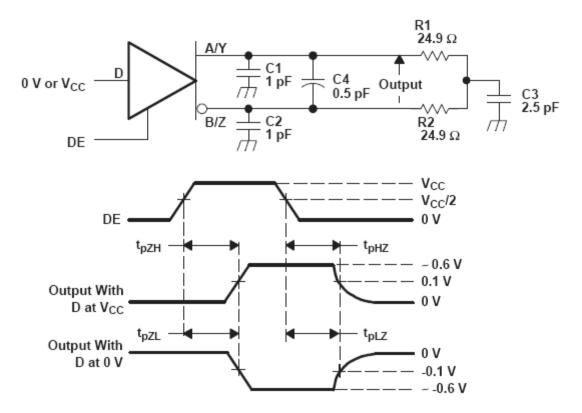




Figure 6. Driver Short-Circuit Test Circuit

- A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_r \le 1$ ns, frequency = 500 kHz, duty cycle = $50 \pm 5\%$.
- B. C1, C2, and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are 20%.
- C. R1 is a metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.
- D. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 7. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

A. All input pulses are supplied by a generator having the following characteristics: tr or $tr \le 1$ ns, frequency = 500 kHz, duty cycle = $50 \pm 5\%$.

- B. C1, C2, C3, and C4 includes instrumentation and fixture capacitance within 2 cm of the D.U.T. and are 20%.
- C. R1 and R2 are metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.
- D. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 8. Driver Enable and Disable Time Circuit and Definitions

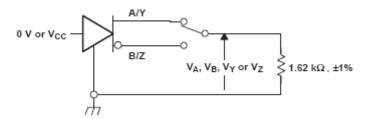
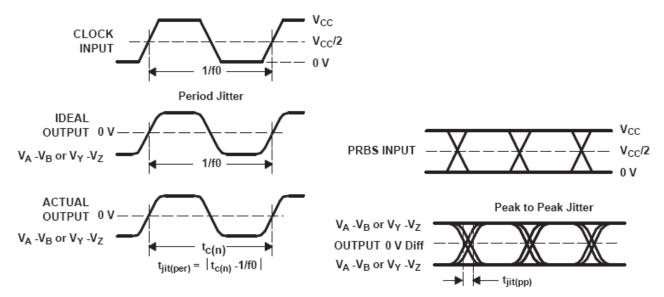
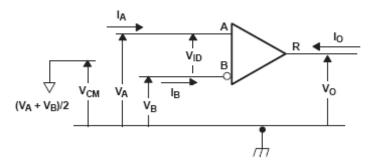
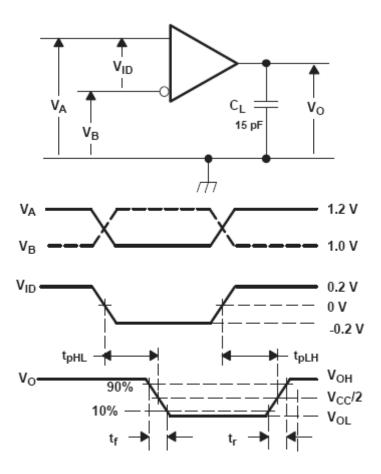
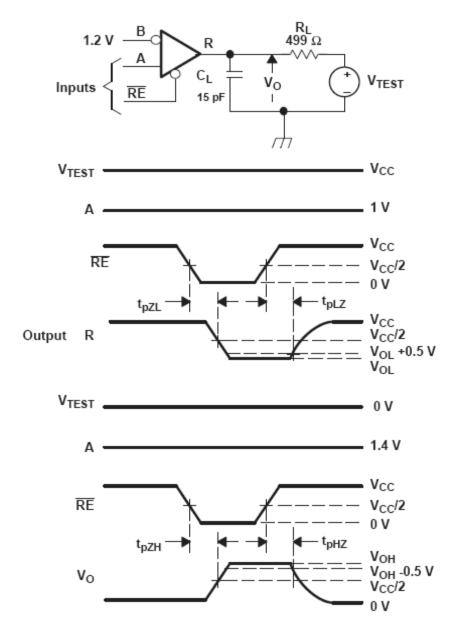



Figure 9. Maximum Steady State Output Voltage

- A. All input pulses are supplied by an Agilent 8304A Stimulus System.
- B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
- C. Period jitter is measured using a 100 MHz 50 \pm 1% duty cycle clock input.
- D. Peak-to-peak jitter is measured using a 200 Mbps 2¹⁵–1 PRBS input.

Figure 10. Driver Jitter Measurement Waveforms

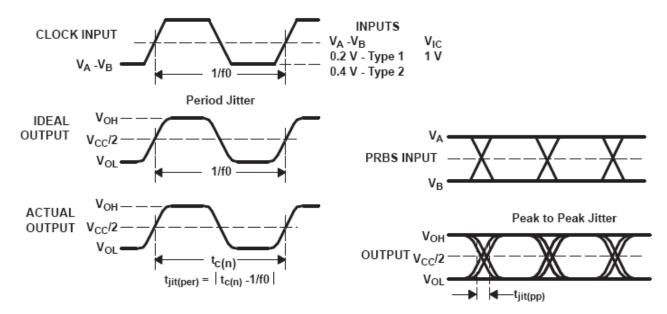




Figure 11. Receiver Voltage and Current Definitions

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_r \le 1$ ns, frequency = 50 MHz, duty cycle = 50 $\pm 5\%$. CL is a combination of a 20%-tolerance, low-loss ceramic, surface-mount capacitor and fixture capacitance within 2 cm of the D.U.T.

B. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 12. Receiver Timing Test Circuit and Waveforms



A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_r \le 1$ ns, frequency = 500 kHz, duty cycle = 50 $\pm 5\%$.

Figure 13. Receiver Enable/Disable Time Test Circuit and Waveforms

B. RL is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T.

C. CL is the instrumentation and fixture capacitance within 2 cm of the DUT and 20%.

- A. All input pulses are supplied by an Agilent 8304A Stimulus System.

 B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
- C. Period jitter is measured using a 100 MHz 50 \pm 1% duty cycle clock input. D. Peak–to–peak jitter is measured using a 200 Mbps 2¹⁵–1 PRBS input.

Figure 14. Receiver Jitter Measurement Waveforms

Table 8. TYPE-1 RECEIVER INPUT THRESHOLD TEST VOLTAGES

Applied Vo	Applied Voltages		Resulting Common– Mode Input Voltage	
VIA	VIB	VID	VIC	Receiver Output
2.400	0.000	2.400	1.200	Н
0.000	2.400	-2.400	1.200	L
3.800	3.750	0.050	3.775	Н
3.750	3.800	-0.050	3.775	L
-1.350	-1.400	0.050	-1.375	Н
-1.400	-1.350	-0.050	-1.375	L

H = high level, L = low level, output state assumes receiver is enabled ($\overline{RE} = L$)

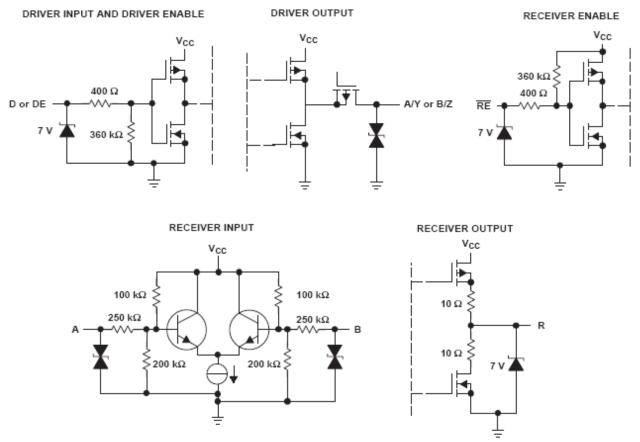


Figure 15. Equivalent Input and Output Schematic Diagrams

APPLICATION INFORMATION

Receiver Input Threshold (Failsafe)

The MLVD standard defines a type 1 and type 2 receiver. Type 1 receivers include no provisions for failsafe and have their differential input voltage thresholds near zero volts.

Type 2 receivers have their differential input voltage thresholds offset from zero volts to detect the absence of a voltage difference. The impact to receiver output by the offset input can be seen in Table 9 and Figure 16.

Table 9. RECEIVER INPUT VOLTAGE THRESHOLD REQUIREMENTS

Receiver Type	Output Low	Output High	
Type 1	-2.4 V ≤ VID ≤ -0.05 V	0.05 V ≤ VID ≤ 2.4 V	

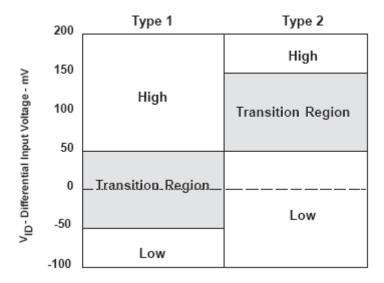


Figure 16. Receiver Differential Input Voltage Showing Transition Regions by Type

Live Insertion/Glitch-Free Power Up/Down

The NB3N200 family of products provides a glitch–free power up/down feature that prevents the M–LVDS outputs of the device from turning on during a power up or power down event. This is especially important in live insertion applications, when a device is physically connected to an M–LVDS multipoint bus and V_{CC} is ramping.

While the M-LVDS interface for these devices is glitch free on power up/down, the receiver output structure is not.

Figure 17 shows the performance of the receiver output pin, R (CHANNEL 2), as V_{CC} (CHANNEL 1) is ramped. The glitch on the R pin is independent of the RE voltage. Any complications or issues from this glitch are easily resolved in power sequencing or system requirements that suspend operation until V_{CC} has reached a steady state value.

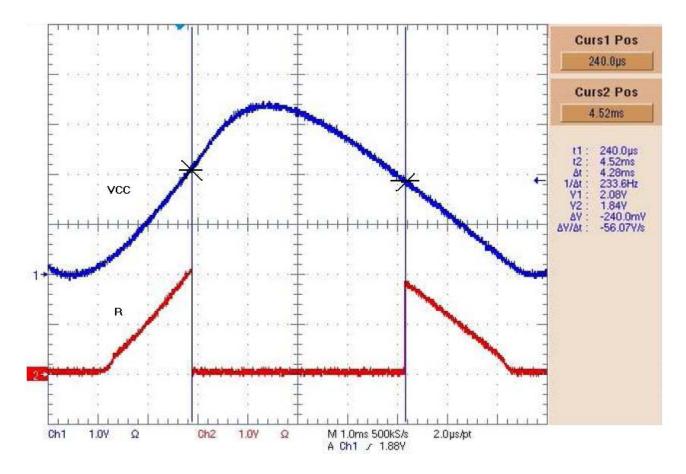


Figure 17. M-LVDS Receiver Output: VCC (CHANNEL 1), R Pin (CHANNEL 2)

Simplex Theory Configurations: Data flow is unidirectional and Point–to–Point from one Driver to one Receiver. NB3N200SDG, NB3N202SDG, NB3N204SDG, and NB3N205SDG devices provide a high signal current allowing long drive runs and high noise immunity. Single

terminated interconnects yield high amplitude levels. Parallel terminated interconnects yield typical MLVDS amplitude levels and minimizes reflections. See Figures 18 and 19. A NB3N200SDG, NB3N202SDG, NB3N204SDG, and NB3N205SDG can be used as the driver or as a receiver.

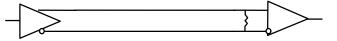


Figure 18. Point-to-Point Simplex Single Termination

Simplex Multidrop Theory Configurations: Data flow is unidirectional from one Driver with one or more Receivers and Multiple boards are required. Single terminated interconnects yield high amplitude levels. Parallel terminated interconnects yield typical MLVDS amplitude levels and minimizes reflections. On the Evaluation Test

Figure 19. Parallel–Terminated Simplex

Board, Headers P1, P2, and P3 may be used as need to interconnect transceivers to a each other or a bus. See Figures 20 and 21. A NB3N200SDG, NB3N202SDG, NB3N204SDG, and NB3N205SDG can be used as the driver or as a receiver.

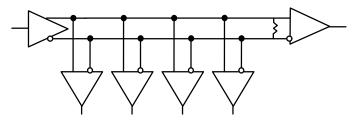


Figure 20. Multidrop or Distributed Simplex with Single Termination

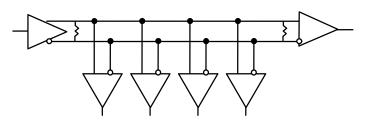


Figure 21. Multidrop or Distributed Simplex with Double Termination

Half Duplex Multinode Multipoint Theory Configurations: Data flow is unidirectional and selected from one of multiple possible Drivers to multiple Receives. One "Two Node" multipoint connection can be accomplished with a single evaluation board. More than Two Nodes requires multiple evaluation test boards. Parallel terminated interconnects yield typical MLVDS amplitude levels and minimizes reflections. Parallel terminated

interconnects yield typical LMVDS amplitude levels and minimizes reflections. On the Test Board, Headers P1, P2, and P3 may be used as need to interconnect transceivers to each other or a bus. See Figure 22. A NB3N202SDG, NB3N204SDG, and NB3N205SDG can be used as the driver or as a receiver. Full duplex bus interconnect configurations are possibe using NB3N202SDG or NB3N205SDG.

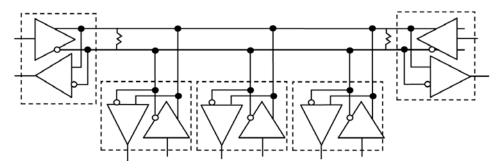


Figure 22. Multinode Multipoint Half Duplex (requires Double Termination)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

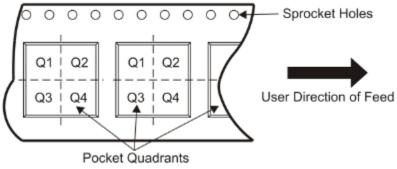
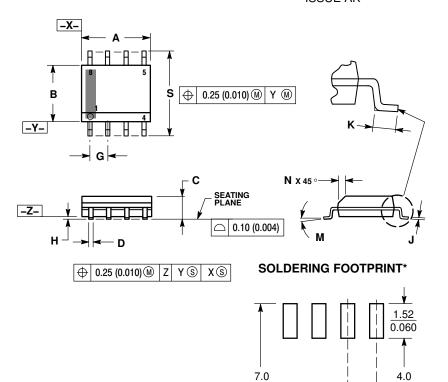


Figure 23.


ORDERING INFORMATION

Device	Receiver	Pin 1 Quadrant	Package	Shipping [†]
NB3N200SDG	Type 1	Q1	SOIC - 8 (Pb-Free)	98 Units / Rail
NB3N200SDR2G	Type 1	Q1	SOIC - 8 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK**

0.275

0.6 0.024

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE
- MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

0.155

1.270

0.050

SCALE 6:1

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partner rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative