

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.5V / 3.3V Differential 2 X 2 **Crosspoint Switch with LVPECL Outputs**

Multi-Level Inputs w/ Internal Termination

Description

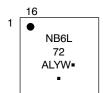
The NB6L72 is a clock or data high-bandwidth fully differential 2 x 2 Crosspoint Switch with internal source termination and LVPECL output structure, optimized for low skew and minimal jitter. The differential inputs incorporate internal 50 Ω termination resistors and will accept LVPECL, CML, LVDS, LVCMOS, or LVTTL logic levels. The SELECT inputs are single-ended and can be driven with LVCMOS/LVTTL.

The differential LVPECL outputs provide 800 mV output swings when externally terminated with a 50 Ω resistor to V_{CC} — 2.0 V.

The device is offered in a small 3 mm x 3 mm 16-pin QFN package. The NB6L72 is a member of the ECLinPS MAX™ family of high performance clock and data management products.

Features

- Input Clock Frequency > 3.0GHz
- Input Data Rate > 3 Gb/s
- 425 ps Typical Propagation Delay
- 100 ps Typical Rise and Fall Times
- 0.5 ps maximum RMS Clock Jitter
- LVPECL, CML or LVDS Input Compatible
- Differential LVPECL Outputs, 800 mV Amplitude, Typical
- Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.63 V with GND = 0 V
- Internal 50 Ω Input Termination Provided
- Functionally Compatible with Existing 2.5 V/3.3 V LVEL, LVEP, EP, and SG Devices
- -40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

QFN-16 **MN SUFFIX CASE 485G**

Α = Assembly Location

L = Wafer Lot Υ = Year = Work Week W = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

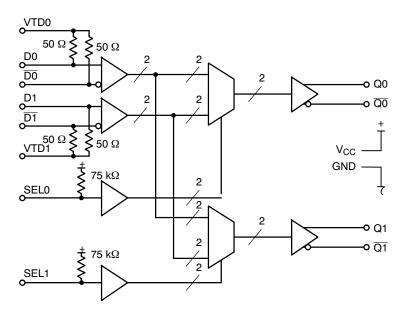


Figure 1. Logic/Block Diagram

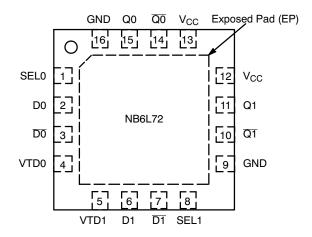


Table 1. INPUT/OUTPUT SELECT TRUTH TABLE

SEL0*	SEL1*	Q0	Q1
L	L	D0	D0
Н	L	D1	D0
L	Н	D0	D1
Н	Н	D1	D1

^{*}Defaults HIGH when left open

Figure 2. Pin Configuration (Top View)

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description
1	SEL0	LVTTL, LVCMOS Input	Select Logic Input control that selects D0 or D1 to output Q0. See Table 1, Select Input Function Table. Pin defaults HIGH when left open
2	D0	LVPECL, CML, LVDS, LVTTL, LVCMOS, Input	Noninverted Differential Input. Note 1.
3	D0	LVPECL, CML, LVDS, LVTTL, LVCMOS, Input	Inverted Differential Input. Note 1.
4	VTD0	-	Internal 50 Ω Termination Pin. Note 1.
5	VTD1	-	Internal 50 Ω termination pin. Note 1.
6	D1	LVPECL, CML, LVDS, LVTTL, LVCMOS, Input	Noninverted Differential Input. Note 1.
7	D1	LVPECL, CML, LVDS, LVTTL, LVCMOS, Input	Inverted Differential Input. Note 1.
8	SEL1	LVTTL,LVCMOS Input	Select Logic Input control that selects D0 or D1 to output Q1. See Table 1, Select Input Function Table. Pin defaults HIGH when left open
9	GND	-	Negative Supply Voltage
10	Q1	LVPECL Output	Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} – 2.0 V.
11	Q1	LVPECL Output	Noninverted Differential Output. Typically Terminated with 50 Ω Resistor to V _{CC} – 2.0 V.
12	V _{CC}	-	Positive Supply Voltage
13	V _{CC}	-	Positive Supply Voltage
14	Q0	LVPECL Output	Inverted Differential Reset Input. Typically Terminated with 50 Ω Resistor to V _{CC} – 2.0 V.
15	Q0	LVPECL Output	Noninverted Differential Reset Input. Typically Terminated with 50 Ω Resistor to V _{CC} – 2.0 V.
16	GND	-	Negative Supply Voltage
-	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die, but is recommended to be electrically and thermally connected to GND on the PC board.

^{1.} In the differential configuration when the input termination pin (VTDn, VTDn) are connected to a common termination voltage or left open, and if no signal is applied on Dn/Dn input, then the device will be susceptible to self-oscillation.

2. All V_{CC} and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Chara	Value	
ESD Protection	Human Body Model Machine Model	> 2 kV > 200 V
Moisture Sensitivity	16-QFN	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count		
Meets or exceeds JEDEC Spe		

For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.0	V
V _{IO}	Positive Input/Output Voltage	GND = 0 V	$-0.5 \le V_{IO} \le V_{CC} + 0.5$	4.5	٧
V _{INPP}	Differential Input Voltage $ D - \overline{D} $			V _{CC} - GND	٧
I _{IN}	Input Current Through R _T (50 Ω Resistor)	Static Surge		45 80	mA mA
I _{OUT}	Output Current (LVPECL Output)	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range	QFN-16		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W °C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 3)	QFN-16	4	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

^{3.} JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS, Multi-Level Inputs $V_{CC} = 2.375 \text{ V}$ to 3.63 V, GND = 0 V, TA = -40°C to $+85^{\circ}\text{C}$

Symbol	Characteristic		Min	Тур	Max	Unit
POWER	SUPPLY CURRENT					
I _{CC}	Power Supply Current (Inputs and Outputs Open)		40	60	80	mA
LVPECL	OUTPUTS (Notes 4 and 5)					
V _{OH}	Output HIGH Voltage Voltage	_{CC} = 3.3 V _{CC} = 2.5 V	V _{CC} - 1075 2225 1425	V _{CC} - 950 2350 1550	V _{CC} - 825 2475 1675	mV
V _{OL}	Output LOW Voltage Vo	_{CC} = 3.3 V _{CC} = 2.5 V	V _{CC} - 1825 1475 675	V _{CC} - 1725 1575 775	V _{CC} - 1625 1675 875	mV
DIFFERE	ENTIAL INPUT DRIVEN SINGLE-ENDED (see Figures 4 a	ınd 5) (Note	6)	•	•	•
V_{th}	Input Threshold Reference Voltage Range (Note 7)		1125		V _{CC} - 150	mV
V_{IH}	Single-ended Input HIGH Voltage		V _{th} + 150		V _{CC}	mV
V_{IL}	Single-ended Input LOW Voltage		GND		V _{th} - 150	mV
V _{ISE}	Single-ended Input Voltage Amplitude (V _{IH} - V _{IL})		300		V _{CC} - GND	mV
DIFFERE	ENTIAL INPUTS DRIVEN DIFFERENTIALLY (see Figures	7 and 9)				
V_{IHD}	Differential Input HIGH Voltage		1050		V _{CC}	mV
V_{ILD}	Differential Input LOW Voltage		GND		V _{CC} - 150	mV
V_{ID}	Differential Input Voltage (Dn, Dn) (V _{IHD} - V _{ILD})		150		V _{CC} - GND	mV
V_{CMR}	Input Common Mode Range (Differential Configuration) (Note 9)	950		V _{CC} – 75	mV
I _{IH}	Input HIGH Current Dn/Dn, (VTDn/VTDn Open)		-150		+150	μА
I _{IL}	Input LOW Current Dn/Dn, (VTDn/VTDn Open)		-150		+150	μА
SINGLE	-ENDED LVCMOS/LVTTL CONTROL INPUTS					
V _{IH}	Single-ended Input HIGH Voltage		2000		V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage		GND		800	mV
I _{IH}	Input HIGH Current		-10		10	μΑ
I _{IL}	Input LOW Current		-150		0	μΑ
TERMIN	ATION RESISTORS					
R _{TIN}	Internal Input Termination Resistor		40	50	60	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. LVPECL outputs loaded with 50 Ω to V_{CC} – 2.0 V for proper operation.

5. Input and output parameters vary 1:1 with V_{CC} .

- 6. V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.
 7. V_{th} is applied to the complementary input when operating in single-ended mode.
- V_{IHD}, V_{ILD}, V_{ID} and V_{CMR} parameters must be complied with simultaneously.
 V_{CMR} minimum varies 1:1 with GND, V_{CMR} max varies 1:1 with V_{CC}. The V_{CMR} range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS $V_{CC} = 2.375 \text{ V}$ to 3.63 V, $V_{EE} = 0 \text{ V}$, or $V_{CC} = 0 \text{ V}$, $V_{EE} = -2.375 \text{ V}$ to -3.63 V, $V_{A} = -40 \text{ C}$ to +85°C; (Note 10)

Symbol	Characteristic		Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ V _{INPPmin}) (Note 14) (See Figure 16)	$\begin{aligned} &f_{in} \leq 1.5 \text{ GHz} \\ &f_{in} \leq 2.5 \text{ GHz} \\ &f_{in} \leq 3.0 \text{ GHz} \end{aligned}$	520 380 320	800 650 500		mV
t _{PLH} , t _{PHL}	Propagation Delay (@0.5GHz)	Dn to Qn SELn to Qn	325	425	525	ps
t _{SKEW}	Duty Cycle Skew (Note 11) Within Device Skew Device to Device Skew (Note 12)			5	20 20 80	ps
t _{DC}	Output Clock Duty Cycle (Reference Duty Cycle = 50%)	f _{in} ≤ 3.0 GHz	40	50	60	%
UITTER	RMS Random Clock Jitter (Note 13) Data Dependent Jitter	$\begin{aligned} f_{\text{in}} &= 2.5 \text{ GHz} \\ f_{\text{in}} &= 3.0 \text{ GHz} \\ f_{\text{DATA}} &= 2.5 \text{ Gb/s} \\ f_{\text{DATA}} &= 3.0 \text{ Gb/s} \end{aligned}$		0.2 0.3 12 15	0.5 1	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 14)		150		V _{CC} - GND	mV
t _r ,t _f	Output Rise/Fall Times @ 0.5 GHz (20% - 80%)	Q, Q		100	160	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{10.} Measured by forcing V_{INPP} (minimum) from a 50% duty cycle clock source. All loading with an external R_L = 50 Ω to V_{CC} – 2.0 V. Input edge rates 40 ps (20% – 80%).

^{11.} Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw} and T_{pw} @ 0.5 GHz.

^{12.} Device to device skew is measured between outputs under identical transition @ 0.5 GHz.

^{13.} Additive RMS jitter with 50% duty cycle clock signal.

^{14.} Input and output voltage swing is a single-ended measurement operating in differential mode.

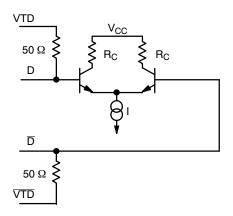


Figure 3. Input Structure

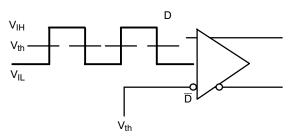


Figure 4. Differential Input Driven Single-Ended

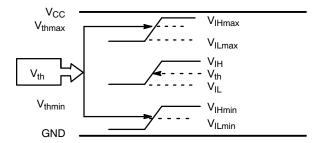


Figure 5. V_{th} Diagram

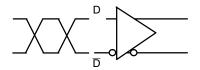


Figure 6. Differential Inputs Driven Differentially

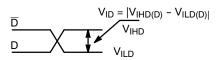


Figure 7. Differential Inputs Driven Differentially

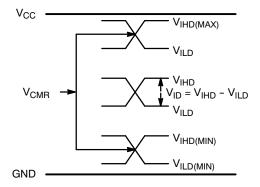


Figure 8. V_{CMR} Diagram

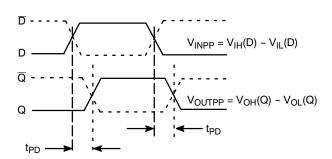


Figure 9. AC Reference Measurement

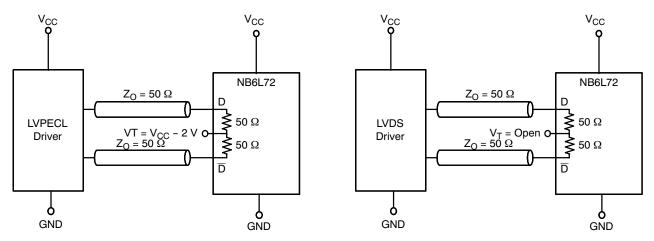


Figure 10. LVPECL Interface

Figure 11. LVDS Interface

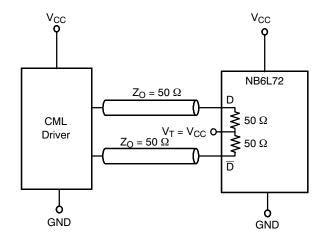
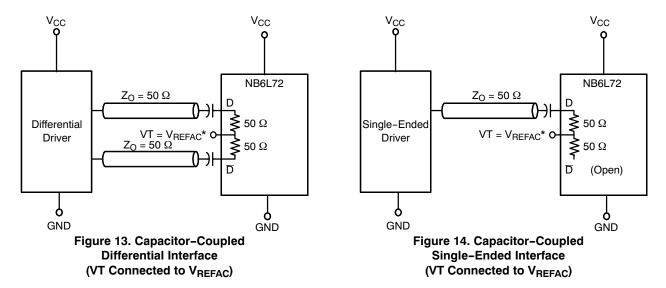



Figure 12. Standard 50 Ω Load CML Interface

*V_REFAC bypassed to ground with a 0.01 μF capacitor

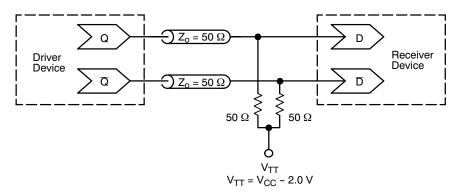


Figure 15. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

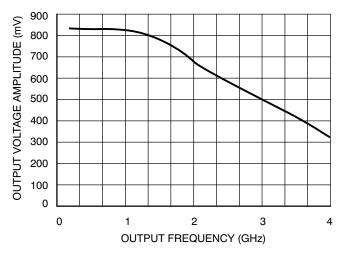


Figure 16. Output Voltage Amplitude (V_{OUTPP}) versus Output Frequency at Ambient Temperature (Typical)

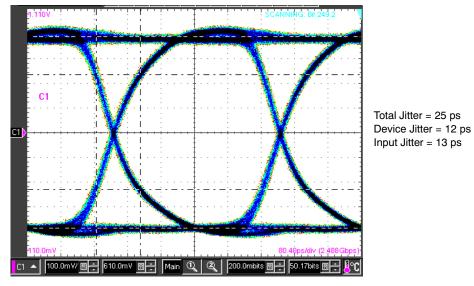
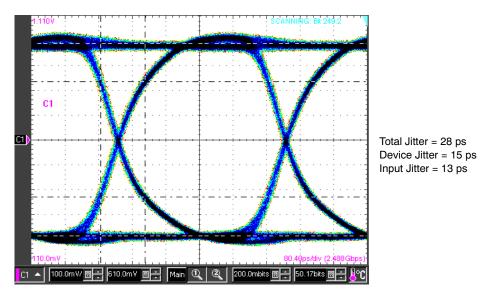
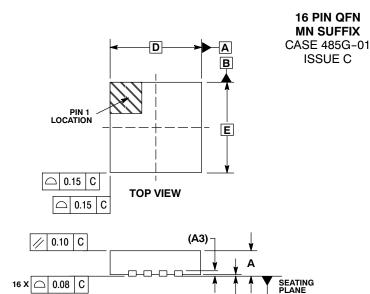


Figure 17. Typical Output Wave Form – Data Signal PRBS 2^{23} –1 Room Temperature, 400 mV Input Amplitude, $V_{CC}=2.5\ V$, 2.488 Gb/s (X–scale = 80 ps/DIV; y–Scale = 100 mV/DIV)




Figure 18. Typical Output Wave Form – Data Signal PRBS 2²³–1 Room Temperature, 75 mV Input Amplitude, 3 Gb/s (X-scale = 80 ps/DIV; y-Scale = 100 mV/DIV)

ORDERING INFORMATION

Device	Package	Shipping [†]
NB6L72MNG	QFN-16 (Pb-free)	123 Units / Rail
NB6L72MNR2G	QFN-16 (Pb-free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SIDE VIEW

16

16X **b**

CAB

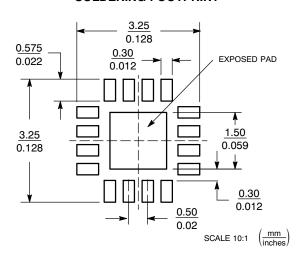
EXPOSED PAD

E2

е 12

NOTES:

- NOTES.


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
- U.25 AND U.30 MIN FROM TERMINALS.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
 Lmax CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
А3	0.20 REF		
b	0.18	0.30	
D	3.00 BSC		
D2	1.65	1.85	
Е	3.00 BSC		
E2	1.65	1.85	
е	0.50 BSC		
K	0.18 TYP		
L	0.30	0.50	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS MAX is a trademark of Semiconductor Components Industries, LLC (SCILLC).

13

BOTTOM VIEW

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

16X L

16X K

0.10

0.05 С NOTE 3

NOTE 5

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative