

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.5V/3.3V, 6.125Gb/s 2:1:10 **Differential Clock/Data Driver with CML Output**

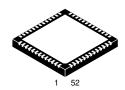
Description

The NB7L111M is a low skew 2:1:10 differential clock/data driver, designed with clock/data distribution in mind. It accepts two clock/data sources into multiplexer input and reproduces ten identical CML differential outputs. This device is ideal for clock/data distribution across the backplane or a board, and redundant clock switchover applications.

The input signals can be either differential or single-ended (if the external reference voltage is provided). Differential inputs incorporate internal 50 Ω termination resistors and accept Negative ECL (NECL), Positive ECL (PECL), LVCMOS, LVTTL, CML, or LVDS (using appropriate power supplies). The differential 16 mA CML output provides matching internal 50 Ω termination, and 400 mV output swing when externally terminated 50 Ω to V_{CC} .

The NB7L111M operates from a 2.5 V $\pm 5\%$ supply or a $3.3 \text{ V} \pm 5\%$ supply and is guaranteed over the full industrial temperature range of -40°C to +85°C. This device is packaged in a low profile 8x8 mm, QFN-52 package with 0.5 mm pitch (see package dimension on the back of the datasheet).

Application notes, models, and support documentation are available at www.onsemi.com.


Features

- Maximum Input Clock Frequency > 5.5 GHz Typical
- Maximum Input Data Rate > 6.125 Gb/s Typical
- < 0.5 ps Maximum Clock RMS Jitter
- < 15 ps Maximum Data Dependent Jitter at 3.125 Gb/s
- 50 ps Typical Rise and Fall Times
- 240 ps Typical Propagation Delay
- 2 ps Typical Duty Cycle Skew
- 10 ps Typical Within Device Skew
- 15 ps Typical Device-to-Device Skew
- Operating Range: $V_{CC} = 2.5 \text{ V } \pm 5 \text{ and } 3.3 \text{ V } \pm 5$
- 400 mV Differential CML Output Swing
- 50 Ω Internal Input and Output Termination Resistors
- These Devices are Pb-Free and are RoHS Compliant*

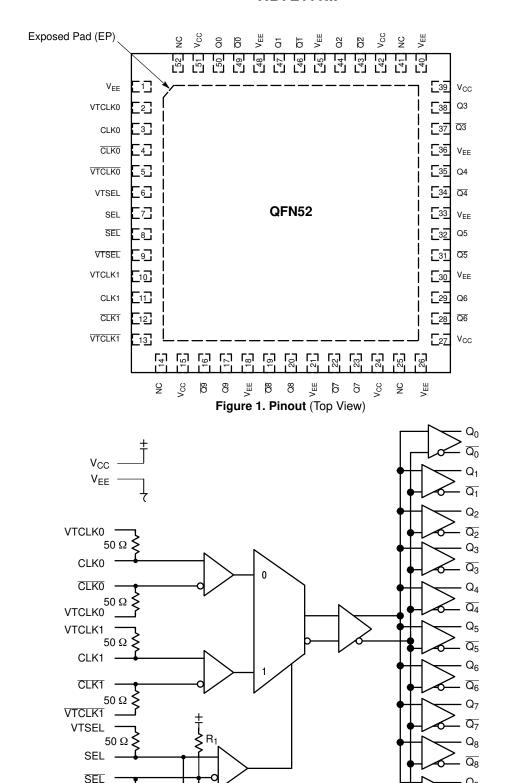
ON Semiconductor®

www.onsemi.com

QFN-52 **MN SUFFIX** CASE 485M

MARKING DIAGRAM*

52 NB7L 111M **AWLYYWWG**


= Assembly Site = Wafer Lot WI YY = Year WW = Work Week = Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information on page 12 of this data sheet

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Table 1. FUNCTION TABLE

 R_2

50 Ω≶

VTSEL

SEL	SEL	CLK0/CLK0	CLK1/CLK1
LOW	HIGH	ON	OFF
HIGH	LOW	OFF	ON

Figure 2. Logic Diagram

 Q_9

 $\overline{\mathsf{Q}_9}$

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description
15, 24, 27, 39, 42, 51	V _{CC}	-	Positive supply voltage. All V _{CC} pins must be externally connected to power supply to guarantee proper operation.
1, 18, 21, 26, 30, 33, 36, 40, 45, 48	V _{EE}	-	Negative supply voltage. All V_{EE} pins must be externally connected to power supply to guarantee proper operation.
2	VTCLK0	-	Internal 50 Ω termination pin for CLK0. (Note 2)
3	CLK0	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Non-inverted differential clock/data input 0 (Note 2).
4	CLK0	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Inverted differential clock/data input 0 (Note 2).
5	VTCLK0	-	Internal 50 Ω termination pin for $\overline{\text{CLK0}}$. (Note 2)
6	VTSEL		Internal 50 Ω termination pin for SEL. (Note 2)
7	SEL	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Non-inverted differential clock/data select input. Internal 75 k Ω to V _{EE} .
8	SEL	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Inverted differential clock/data select input. Internal 56 K Ω to V _{CC} and 56 k Ω to V _{EE} bias this pin to (V _{CC} –V _{EE})/2.
9	VTSEL	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Internal 50 Ω termination pin for SEL. (Note 2)
10	VTCLK1	-	Internal 50 Ω termination pin for CLK1. (Note 2)
11	CLK1	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Non-inverted differential clock/data input 1 (Note 2).
12	CLK1	LVPECL, CML, LVCMOS, LVTTL, LVDS Input	Inverted differential clock/data input 1 (Note 2).
13	VTCLK1	-	Internal 50 Ω termination pin for $\overline{\text{CLK1}}$. (Note 2)
14, 25, 41, 52	NC	-	
17, 20, 23, 29, 32, 35, 38, 44, 47, 50	Q[0–9]	CML Outputs	Non–inverted CML outputs [0–9] with internal 50 Ω source termination resistor (Note 1).
16, 19, 22, 28, 31, 34, 37, 43, 46, 49	Q[0-9]	CML Outputs	Inverted CML outputs [0–9] with internal 50 Ω source termination resistor (Note 1).
EP	-	-	Exposed Pad (EP). The thermally exposed pad on package bottom (see case drawing) must be attached to a heat–sinking conduit on the printed circuit board.

CML output requires 50 Ω receiver termination resistor to V_{CC} for proper operation.
 In the differential configuration when the input termination pin (VTCLK, VTCLK) are connected to a common termination voltage or left open, and if no signal is applied on CLK and CLK then the device will be susceptible to self–oscillation.

Table 3. ATTRIBUTES

Characteris	Value			
Input Default State Resistors	sistors R1, R3		kΩ kΩ	
ESD Protection	Human Body Model Machine Model	> 14 > 8		
Moisture Sensitivity (Note 3)	Pb Pkg	Pb-Free Pkg		
	QFN-52	Level 2	Level 1	
Flammability Rating	UL 94 V-0	@ 0.125 in		
Transistor Count	30	39		
Meets or exceeds JEDEC Spec EIA				

^{3.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 4)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.6	٧
VI	Input Voltage	V _{EE} = 0 V	$V_{EE} \leq V_{I} \leq V_{CC}$	3.6	V
V _{INPP}	Differential Input Voltage CLK - CLK	$\begin{array}{c} V_{CC} - V_{EE} \geq 2.8 \ V \\ V_{CC} - V_{EE} < 2.8 \ V \end{array}$		2.8 V _{CC} – V _{EE}	V V
I _{in}	Input Current Through R_T (50 Ω Resistor)	Continuous Surge		25 50	mA mA
l _{out}	Output Current	Continuous Surge		25 50	mA mA
T _A	Operating Temperature Range	QFN52		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction–to–Ambient) (Note 5)	0 lfpm 500 lfpm	QFN52	25 19.6	°C/W °C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	1S2P (Note 8)	QFN52	21	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

4. Maximum Ratings are those values beyond which device damage may occur.

5. JEDEC standard multilayer board – 1S2P (1 signal, 2 power).

Table 5. DC CHARACTERISTICS $V_{CC} = 2.375 \text{ V } 2.625 \text{ V } \text{ and } 3.135 \text{ V to } 3.465 \text{ V}, V_{EE} = 0 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C} \text{ (Notes 6 and 7)}$

Symbol	Characteristic	Min	Тур	Max	Unit
I _{CC}	Power Supply Current (Inputs and Outputs Open) $ V_{CC} = 2.375 \text{ V to } 2.625 \text{ V } \\ V_{CC} = 3.135 \text{ V to } 3.465 \text{ V} $	255 270	290 305	325 340	mA
V _{OH}	Output HIGH Voltage (Notes 6 and 7)	V _{CC} – 40	V _{CC} – 20	V_{CC}	mV
V _{OL}	Output LOW Voltage (Notes 6 and 7) $V_{CC} = 2.375 \text{ V to } 2.625 \text{ V} $ $V_{CC} = 3.135 \text{ V to } 3.465 \text{ V}$	V _{CC} - 440 V _{CC} - 490	V _{CC} - 350 V _{CC} - 400	V _{CC} – 290 V _{CC} – 340	mV
DIFFERE	NTIAL INPUT DRIVEN SINGLE-ENDED (See Figures 13 and 15)				
V _{th}	Input Threshold Reference Voltage Range (Note 8)	1125		V _{CC} – 75	mV
V _{IH}	Single-ended Input HIGH Voltage (Note 7)	V _{th} + 75		V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage (Note 7)	V _{EE}		V _{CC} – 150	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIALLY (See Figures 14 and 16)				
V_{IHD}	Differential Input HIGH Voltage	1200		V _{CC}	mV
V_{ILD}	Differential Input LOW Voltage	V_{EE}		V _{CC} – 75	mV
V_{CMR}	Input Common Mode Range (Differential Configuration) (Note 9)	1163		V _{CC} – 37	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2500	mV
I _{IH}	Input HIGH Current CLK[0-1]/CLK[0-1] (Termination Pins Open) SEL/SEL	-100 -150	5	100 150	μΑ
I _{IL}	Input LOW Current CLK[0-1]/CLK[0-1] (Termination Pins Open) SEL/SEL	-100 -150	5	100 150	μΑ
R _{TIN}	Internal Input Termination Resistor	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	Ω
R _{Temp} Coef	Internal I/O Termination Resistor Temperature Coefficient		-3.75		mΩ/C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 6. CML outputs require $50~\Omega$ receiver termination resistors to V_{CC} for proper operation. 7. Input and output parameters vary 1:1 with V_{CC} . 8. V_{th} is applied to the complementary input when operating in single–ended mode. 9. $V_{CMR}(MIN)$ varies 1:1 with V_{EE} , $V_{CMR}(MAX)$ varies 1:1 with V_{CC} .

Table 6. AC CHARACTERISTICS $V_{CC} = 2.375 \text{ V}$ to 2.625 V and 3.135 V to 3.465 V, $V_{EE} = 0 \text{ V}$; (Note 10)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ $V_{inppmin}$) (See Figures 3, 4, 5, and 6) $V_{CC} = 2.375 \text{ V to } 2.625 \text{ V}$ $f_{in} \leq 3 \text{ GHz}$ $f_{in} \leq 5.5 \text{ GHz}$ $V_{CC} = 3.135 \text{ V to } 3.465 \text{ V}$ $f_{in} \leq 3 \text{ GHz}$ $f_{in} \leq 5.5 \text{ GHz}$	240 115 250 130	330 220 350 250		240 115 250 130	330 220 350 250		240 115 250 130	330 220 350 250		mV
f _{DATA}	Maximum Operating Data Rate	5	6		5	6		5	6		Gb/s
t _{PLH} , t _{PHL}	Differential Input-to-Output Propagation Delay @ 1 GHz (See Figures 7 and 11) CLK-Q SEL-Q	200 290	240 340	280 390	200 290	240 340	280 390	200 290	240 340	280 390	ps
t _{SKEW}	Duty Cycle Skew (Note 11) Within Device Skew Device-to-Device Skew (Note 15)		2 10 15	15 20 80		2 10 15	15 20 80		2 10 15	15 20 80	ps
t _{JITTER}	RMS Random Clock Jitter (Note 13) $f_{in} = 3 \text{ GHz}$ $f_{in} = 5.5 \text{ GHz}$ Peak-to-Peak Data Dependent Jitter (Note 14) $f_{DATA} = 3.125 \text{ Gb/s}$ $f_{DATA} = 5 \text{ Gb/s}$ $f_{DATA} = 6.125 \text{ Gb/s}$		0.2 0.2 6 15	0.5 0.5 15 25 25		0.2 0.2 6 15 15	0.5 0.5 15 25 25		0.2 0.2 6 15	0.5 0.5 15 25 25	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 12 and Figures 3, 4, 5, and 6)	75	400	2500	75	400	2500	75	400	2500	mV
t _r	Output Rise/Fall Times @ 1 GHz (20% – 80%)		50	75		50	75		50	75	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

^{10.} Measured by forcing $V_{INPP}(MIN)$ from a 50% duty cycle clock source. All loading with an external $R_L = 50 \Omega$ to V_{CC} . Input edge rates 40 ps (20% – 80%).

^{11.} Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw– and Tpw+ @ 1 GHz. 12. V_{INPP}(MAX) cannot exceed V_{CC} – V_{EE}. Input voltage swing is a single–ended measurement operating in differential mode. 13. Additive RMS jitter with 50% duty cycle clock signal.

^{14.} Additive peak-to-peak data dependent jitter with input NRZ data at PRBS 2²³–1.

^{15.} Device-to-device skew is measured between outputs under identical transition and conditions @ 1 GHz.

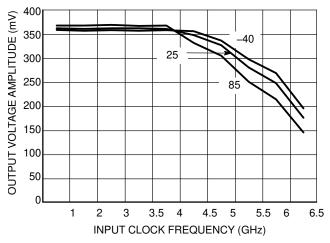


Figure 3. Output Voltage Amplitude vs. Input Clock Frequency and Temperature (V_{inpp} = 400 mV; V_{CC} = 3.3 V)

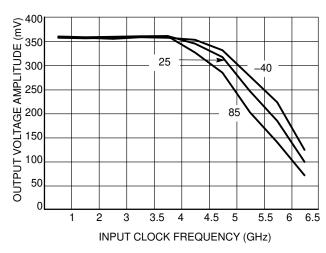


Figure 4. Output Voltage Amplitude vs. Input Clock Frequency and Temperature (V_{inpp} = 75 mV; V_{CC} = 3.3 V)

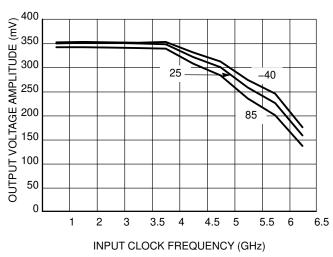


Figure 5. Output Voltage Amplitude vs. Input Clock Frequency and Temperature (V_{inpp} = 400 mV; V_{CC} = 2.5 V)

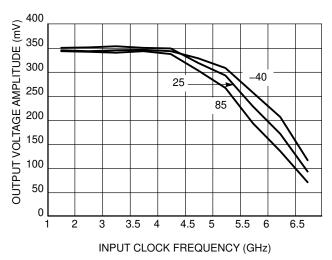


Figure 6. Output Voltage Amplitude vs. Input Clock Frequency and Temperature (V_{inpp} = 75 mV; V_{CC} = 2.5 V)

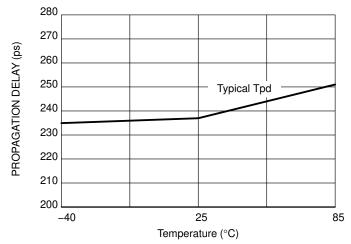


Figure 7. Propagation Delay versus Temperature

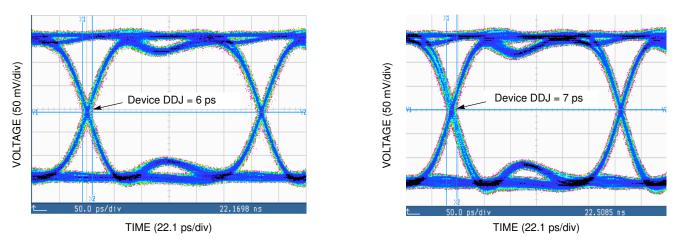


Figure 8. Typical Output Waveform at 3.125 Gb/s with PRBS 2^{23} –1 (V_{inpp} = 75 mV–left and 400 mV–right)

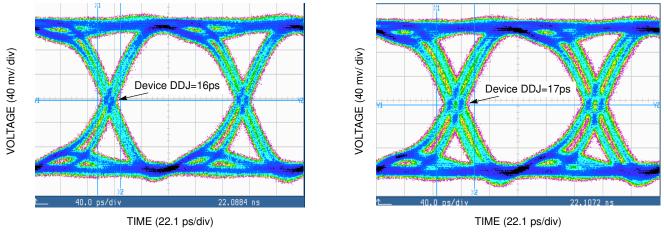


Figure 9. Typical Output Waveform at 5 Gb/s with PRBS 2^{23} –1 (V_{inpp} =75 mV-left and 400 mV-right)

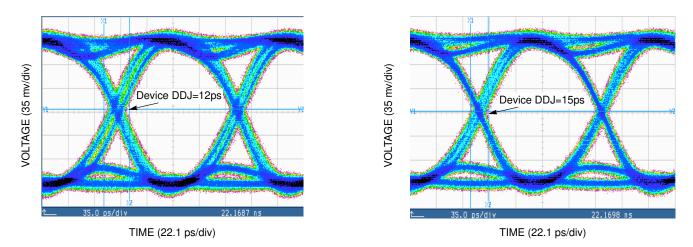


Figure 10. Typical Output Waveform at 6.125 Gb/s with PRBS 2²³–1 (V_{inpp} = 75 mV–left and 400 mV–right)

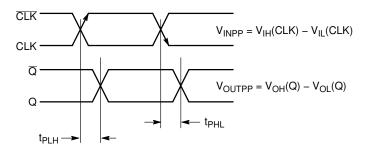


Figure 11. AC Reference Measurement

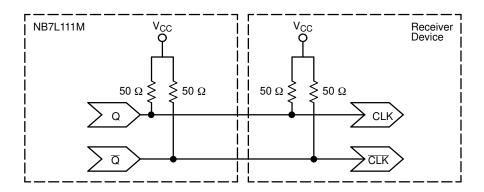


Figure 12. Typical Termination for 16 mA Output Drive and Device Evaluation

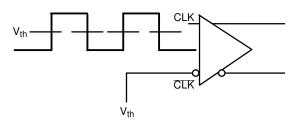


Figure 13. Differential Input Driven Single-Ended

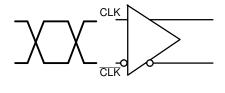


Figure 14. Differential Inputs Driven Differentially

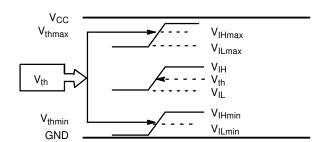


Figure 15. V_{th} Diagram

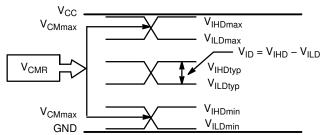


Figure 16. V_{CMR} Diagram

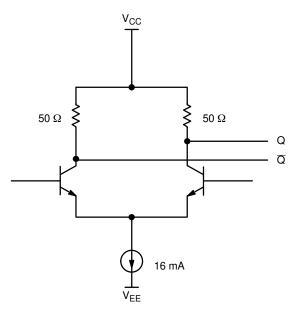


Figure 17. CML Output Structure

Table 7. Interfacing Options

INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTCLK0, VTCLK1, VTCLK1, VTSEL, VTSEL to V _{CC}
LVDS Connect VTCLK0, VTCLK0 together for CLK0 input; Connect VTCLK1, VTCLK1 together for CLK1 input.	
AC-COUPLED	Bias VTCLK0, VTCLK0, VTSEL, VTSEL and VTCLK1, VTCLK1 inputs within (VCMR) Common Mode Range.
RSECL, LVPECL Standard ECL termination techniques. See AND8020.	
LVTTL, LVCMOS	An external voltage should be applied to the unused complementary differential input. Nominal voltage 1.5 V for LVTTL and $V_{\rm CC}/2$ for LVCMOS inputs.

Application Information

All NB7L111M inputs can accept LVPECL, CML, LVTTL, LVCMOS and LVDS signal levels. The limitations for differential input signal (LVDS, PECL, or CML) are minimum input swing of 75 mV $_{PP}$ and the maximum input

swing of 2500 mV_{PP}. Within these differential conditions, the input HIGH voltage can range from V_{CC} to 1.2 V. Examples of interfaces are illustrated below in a 50 Ω environment (Z = 50 Ω).

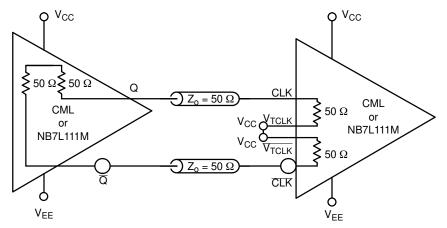


Figure 18. CML to CML Interface

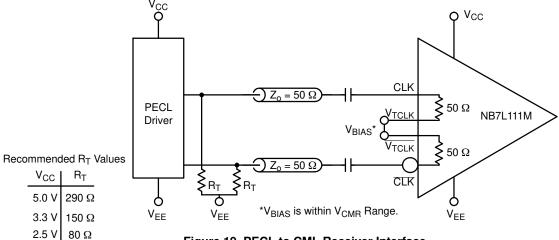


Figure 19. PECL to CML Receiver Interface

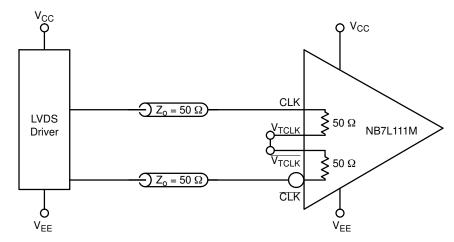
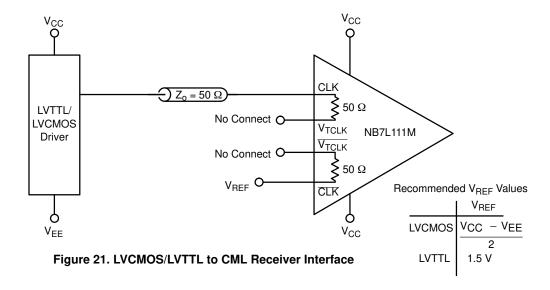
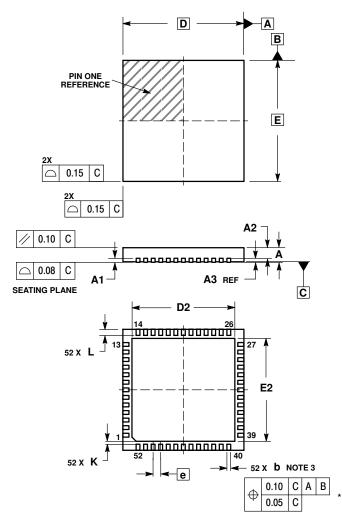



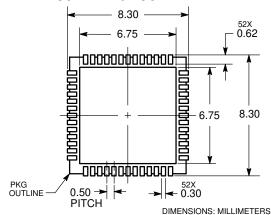
Figure 20. LVDS to CML Receiver Interface


ORDERING INFORMATION

Device	Package	Shipping [†]
NB7L111MMNG	QFN-52 (Pb-Free)	260 Units / Tray
NB7L111MMNR2G	QFN-52 (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


QFN52 8x8, 0.5P CASE 485M ISSUE C

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
- CONTROLLING DIMENSION: MILLIMETERS DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30
- MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.80	1.00		
A1	0.00	0.05		
A2	0.60	0.80		
A3	0.20	REF		
b	0.18	0.30		
D	8.00	BSC		
D2	6.50	6.80		
Е	8.00	BSC		
E2	6.50	6.80		
е	0.50	BSC		
K	0.20			
L	0.30	0.50		

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GigaComm is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative