

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

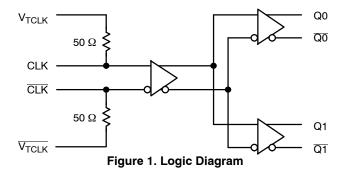
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.5 V/3.3 V Differential 1:2 Clock/Data Fanout Buffer/Translator with CML Outputs and Internal Termination

Description


The NB7L11M is a differential 1-to-2 clock/data distribution chip with internal source termination and CML output structure, optimized for low skew and minimal jitter. The device is functionally equivalent to the EP11, LVEP11, or SG11 devices. Device produces two identical output copies of clock or data operating up to 8 GHz or 12 Gb/s, respectively. As such, NB7L11M is ideal for SONET, GigE, Fiber Channel, Backplane and other clock/data distribution applications.

Inputs incorporate internal 50 Ω termination resistors and accept LVPECL, CML, LVCMOS, LVTTL, or LVDS (See Table 6). Differential 16 mA CML output provides matching internal 50 Ω terminations, and 400 mV output swings when externally terminated, 50 Ω to V_{CC} (See Figure 14).

The device is offered in a low profile 3x3 mm 16-pin QFN package. Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Maximum Input Clock Frequency up to 8 GHz Typical
- Maximum Input Data Rate up to 12 Gb/s Typical
- < 0.5 ps of RMS Clock Jitter
- < 10 ps of Data Dependent Jitter
- 30 ps Typical Rise and Fall Times
- 110 ps Typical Propagation Delay
- 3 ps Typical Within Device Skew
- Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.465 V with $V_{EE} = 0 \text{ V}$
- CML Output Level (400 mV Peak-to-Peak Output) Differential Output Only
- 50 Ω Internal Input and Output Termination Resistors
- Functionally Compatible with Existing 2.5 V/3.3 V LVEL, LVEP, EP and SG Devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

QFN-16 MN SUFFIX CASE 485G-01

MARKING DIAGRAM*

NB7L 11M ALYW•

A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
= Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
NB7L11MMNG	QFN-16 (Pb-Free)	123 Units/Tube
NB7L11MMNR2G	QFN-16 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

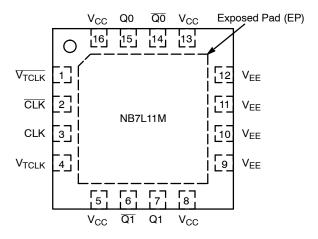


Figure 2. QFN-16 Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	V_{TCLK}	-	Internal 50 Ω Termination Pin for $\overline{\text{CLK}}$
2	CLK	LVPECL, CML, LVCMOS, LVTTL, LVDS	Inverted Differential Clock/Data Input. (Note 1)
3	CLK	LVPECL, CML, LVCMOS, LVTTL, LVDS	Non-inverted Differential Clock/Data Input. (Note 1)
4	V _{TCLK}	-	Internal 50 Ω Termination Pin for CLK
5,8,13,16	V _{CC}	-	Positive Supply Voltage. All V_{CC} pins must be externally connected to a Power Supply to guarantee proper operation.
6	Q1	CML Output	Inverted $\overline{\text{CLK}}$ output 1 with internal 50 Ω source termination resistor. (Note 2)
7	Q1	CML Output	Non-inverted CLK output 1 with internal 50 Ω source termination resistor. (Note 2)
9,10,11,12	V _{EE}	-	Negative Supply Voltage. All V_{EE} pins must be externally connected to a Power Supply to guarantee proper operation.
14	Q0	CML Output	Inverted $\overline{\text{CLK}}$ output 0 with internal 50 Ω source termination resistor. (Note 2)
15	Q0	CML Output	Non-inverted CLK output 0 with internal 50 Ω source termination resistor. (Note 2)
_	EP	-	Exposed Pad. The thermally exposed pad on package bottom (see case drawing) must be attached to a heatsinking conduit. It is recommended to connect the EP to the lower potential (V_{EE}).

In the differential configuration when the input termination pins (V_{TCLK}, V_{TCLK}) are connected to a common termination voltage or left open, and if no signal is applied on CLK and CLK then the device will be susceptible to self-oscillation.
 CML outputs require 50 Ω receiver termination resistor to V_{CC} for proper operation.

Table 2. ATTRIBUTES

Characteristics	Value			
ESD Protection Human Body Model Machine Model Charged Device Model	> 1500 V > 50 V > 500 V			
Moisture Sensitivity (Note 1)	Pb-Free Pkg			
QFN-16	Level 1			
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in			
Transistor Count	285			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.6	V
VI	Input Voltage	V _{EE} = 0 V	V _{EE} + + V _I + + V _{CC}	3.6	V
V _{INPP}	Differential Input Voltage CLK - CLK	$\begin{array}{c} V_{CC} - V_{EE} \geq 2.8 \ V \\ V_{CC} - V_{EE} < 2.8 \ V \end{array}$		2.8 V _{CC} – V _{EE}	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		45 80	mA
l _{out}	Output Current	Continuous Surge		25 50	mA
T _A	Operating Temperature Range	QFN-16		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 1)	0 lfpm 500 lfpm	QFN-16	42 36	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	2S2P (Note 1)	QFN-16	3 to 4	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Table 4. DC CHARACTERISTICS, CLOCK Inputs, CML Outputs

 $(V_{CC} = 2.375 \text{ V to } 3.465 \text{ V}, V_{EE} = 0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}) \text{ (Note 1)}$

Symbol	Characteristic	Min	Тур	Max	Unit
I _{CC}	Power Supply Current (Input and Outputs open)		85	105	mA
V _{OH}	Output HIGH Voltage (Note 2)	V _{CC} - 60	V _{CC} – 20	V _{CC}	mV
V _{OL}	Output LOW Voltage (Note 2)	V _{CC} - 530	V _{CC} – 420	V _{CC} – 360	mV
Differential	Input Driven Single-Ended (see Figures 10 & 12) (Note 4)				
V _{th}	Input Threshold Reference Voltage Range (Note 3)	1125		V _{CC} – 75	mV
V _{IH}	Single-ended Input HIGH Voltage (Note 4)	V _{th} + 75		V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage (Note 4)	V _{EE}		V _{th} – 75	mV
Differential	Inputs Driven Differentially (see Figures 11 & 13) (Note 4)				
V _{IHCLK}	Differential Input HIGH Voltage	1200		V _{CC}	mV
V _{ILCLK}	Differential Input LOW Voltage	V _{EE}		V _{CC} – 75	mV
V_{CMR}	Input Common Mode Range (Differential Configuration)	1163		V _{CC} – 38	mV
V_{ID}	Differential Input Voltage (V _{IHCLK} – V _{ILCLK})	75		2500	mV
I _{IH}	Input HIGH Current CLK / CLK (V _{TCLK} /V _{TCLK} Open)	0	25	100	μΑ
I _{IL}	Input LOW Current CLK / CLK (V _{TCLK} /V _{TCLK} Open)	-10	0	10	μΑ
R _{TIN}	Internal Input Termination Resistor	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	Ω
R _{Temp Coef}	Internal I/O Termination Resistor Temperature Coefficient		6.38		mΩ/°C

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} .

 2. CML outputs require 50 Ω receiver termination resistors to V_{CC} for proper operation.

 3. V_{th} is applied to the complementary input when operating in single-ended mode.

 4. V_{CMR} min varies 1:1 with V_{EE} , V_{CMR} max varies 1:1 with V_{CC} .

Table 5. AC CHARACTERISTICS ($V_{CC} = 2.375 \text{ V}$ to 3.465 V, $V_{EE} = 0 \text{ V}$; Note 1)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ $V_{INPPmin}$) (See Figure 3) $f_{in} \le 6$ GHz $f_{in} \le 8$ GHz	280 140	400 300		280 140	400 300		280 140	400 300		mV
f _{data}	Maximum Operating Data Rate	10	12		10	12		10	12		Gb/s
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	70	110	150	70	110	150	70	110	150	ps
t _{SKEW}	Duty Cycle Skew (Note 2) Within-Device Skew Device-to-Device Skew (Note 3)		2.0 3.0 20	5.0 15 50		2.0 3.0 20	5.0 15 50		2.0 3.0 20	5.0 15 50	ps
[†] JITTER	RMS Random Clock Jitter (Note 4) $f_{in} = 6 \text{ Ghz}$ $f_{in} = 8 \text{ Ghz}$ Peak/Peak Data Dependent Jitter (Note 5) $f_{in} = 2.488 \text{ Gb/s}$ $f_{data} = 5 \text{ Gb/s}$ $f_{data} = 10 \text{ Gb/s}$		0.2 0.2 2.0 3.0 5.0	0.5 0.5 5.0 8.0 10		0.2 0.2 2.0 3.0 5.0	0.5 0.5 5.0 8.0 10		0.2 0.2 2.0 3.0 5.0	0.5 0.5 5.0 8.0 10	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 6)	75	400	2500	75	400	2500	75	400	2500	mV
t _r	Output Rise/Fall Times @ 1 Ghz (20% - 80%) Q, Q		30	60		30	60		30	60	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Measured by forcing V_{INPP} (TYP) from a 50% duty cycle clock source. All loading with an external R_L = 50 Ω to V_{CC} . Input edge rates 40 ps (20% 80%).
- 2. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw- and Tpw+ @1 GHz.
- 3. Device to device skew is measured between outputs under identical transition @ 1 GHz.
- 4. Additive RMS jitter with 50% duty cycle clock signal at 8 GHz & 10 GHz.
- 5. Additive peak-to-peak data dependent jitter with input NRZ data at PRBS 2²³-1.
- 6. V_{INPP} (MAX) cannot exceed V_{CC} V_{EE}. Input voltage swing is a single-ended measurement operating in differential mode.

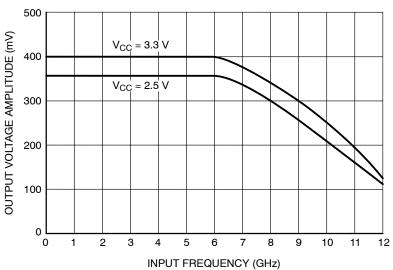


Figure 3. Output Voltage Amplitude (V_{OUTPP}) Versus Input Clock Frequency (f_{in}) at Ambient Temperature (Typical) ($V_{INPP} = 400 \text{ mV}$)

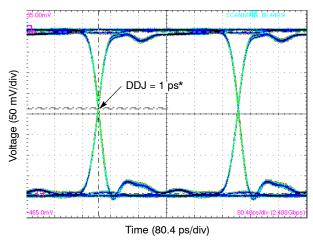


Figure 4. Typical Output Waveform at 2.488 Gb/s with PRBS 2^{23} -1 (V_{inpp} = 75 mV)

*Input signal DDJ = 6.4 ps

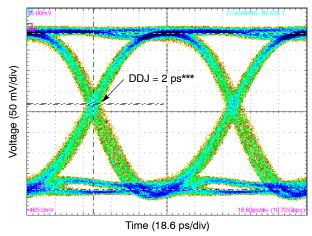


Figure 6. Typical Output Waveform at 10.7 Gb/s with PRBS 2^{23} -1 (V_{inpp} = 75 mV)

***Input signal DDJ = 11 ps

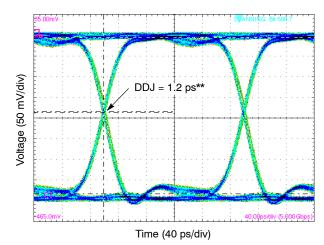


Figure 5. Typical Output Waveform at 5 Gb/s with PRBS 2²³-1 (V_{inpp} = 75 mV)

**Input signal DDJ = 7.2 ps

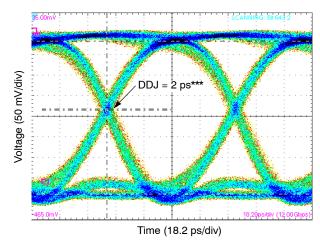


Figure 7. Typical Output Waveform at 12 Gb/s with PRBS 2^{23} -1 (V_{inpp} = 75 mV)

***Input signal DDJ = 13 ps

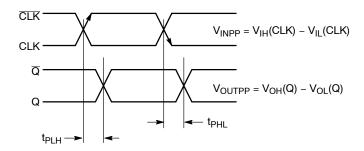


Figure 8. AC Reference Measurement

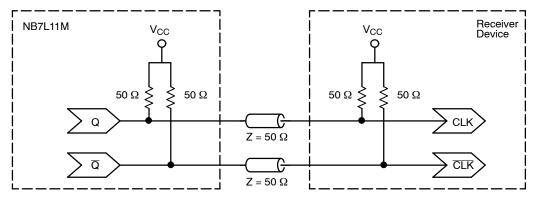


Figure 9. Typical Termination for Output Driver Using External Termination Resistor (Refer to Application Notes <u>AND8020/D</u> and <u>AND8173/D</u>)

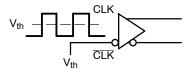


Figure 10. Differential Input Driven Single-Ended

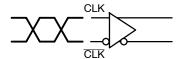


Figure 11. Differential Inputs Driven Differentially

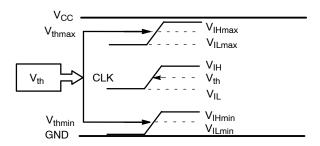


Figure 12. V_{th} Diagram

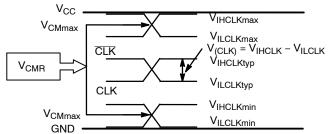


Figure 13. V_{CMR} Diagram

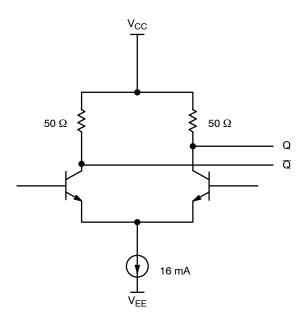


Figure 14. CML Output Structure

Table 6. INTERFACING OPTIONS

INTERFACING OPTIONS CONNECTIONS			
CML	Connect V_{TCLK} , $\overline{V_{TCLK}}$ to V_{CC}		
LVDS	Connect V_{TCLK} , $\overline{V_{TCLK}}$ together CLK input		
AC-COUPLED	Bias V_{TCLK} , $\overline{V_{TCLK}}$ Inputs within (V_{CMR}) Common Mode Range		
RSECL, LVPECL	Standard ECL Termination Techniques. See AND8020/D.		
LVTTL, LVCMOS	An external voltage should be applied to the unused complementary differential input. Nominal voltage is 1.5 V for LVTTL and $V_{CC}/2$ for LVCMOS inputs.		

Application Information

All NB7L11M inputs can accept PECL, CML, LVTTL, LVCMOS and LVDS signal levels. The limitations for differential input signal (LVDS, PECL, or CML) are

minimum input swing of 75 mV and the maximum input swing of 2500 mV. Within these conditions, the input voltage can range from VCC to 1.2 V. Examples interfaces are illustrated below in a 50 Ω environment (Z = 50 Ω).

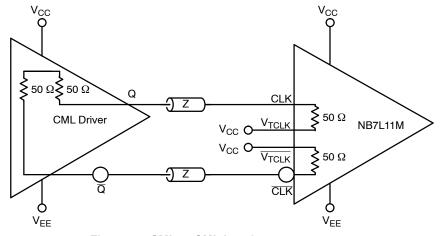


Figure 15. CML to CML Interface

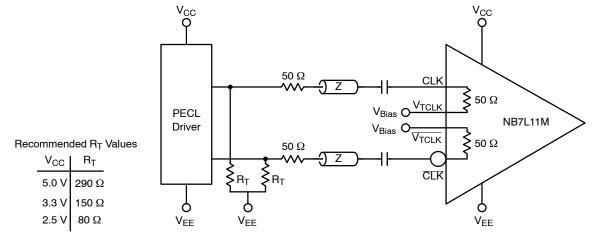


Figure 16. PECL to CML Receiver Interface

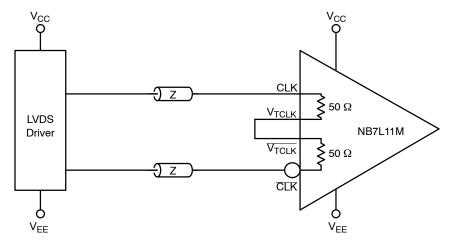


Figure 17. LVDS to CML Receiver Interface

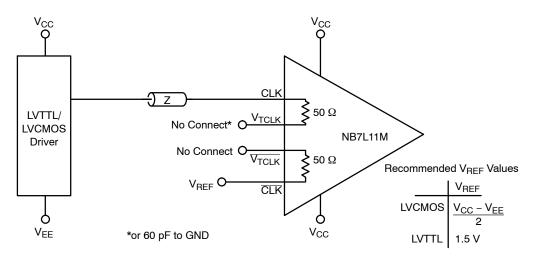
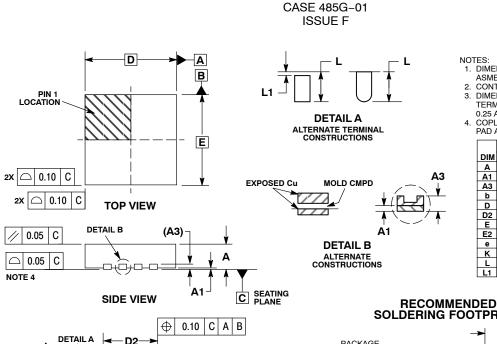



Figure 18. LVCMOS/LVTTL to CML Receiver Interface

PACKAGE DIMENSIONS

QFN16 3x3, 0.5P

E₂

0.10

CAB

0.05 | C | NOTE 3


16X **b**

Ф

- IES:
 DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED
- DIMENSION DAPPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	0.80	0.90	1.00			
A 1	0.00	0.03	0.05			
А3	0	.20 REF				
b	0.18	0.18 0.24				
D	3	3.00 BSC				
D2	1.65	1.75	1.85			
Е	3	3.00 BSC				
E2	1.65	1.75	1.85			
е	0.50 BSC					
Κ	0.18 TYP					
L	0.30	0.40 0.5				
L1	0.00					

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

е

BOTTOM VIEW

e/2

LITERATURE FULFILLMENT

16X L

16X K

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative