

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NB7L32M Evaluation Board User's Manual

ON Semiconductor®

<http://onsemi.com>

Description

This document describes the NB7L32M evaluation board and the appropriate lab test setups (See Figure 1). It should be used in conjunction with the NB7L32M data sheet which contains full technical details on the device specification and operation.

The evaluation board is designed to facilitate a quick evaluation of the NB7L32M GigaComm™ Clock Driver. The NB7L32M is designed to support the distribution of clock/data signals at high operating frequencies and produces two equal differential clock/data outputs from a single input clock/data. The Current Mode Logic (CML) output ensures minimal noise and fast switching edges.

The evaluation board is implemented in two layers for higher performance.

Board Lay-up

The board is implemented in two layers and provides a high bandwidth 50 Ω controlled impedance environment for higher performance. The first layer or primary trace layer is 5 mils thick Rogers RO6002 material, which is engineered to have equal electrical length on all signal traces from the NB7L32M device to the sense output. The second layer is 32 mils thick copper ground plane.

EVAL BOARD USER'S MANUAL

What measurements can you expect to make?

With this evaluation board, the following measurements could be performed in single-ended or differential modes of operation:

- Jitter
- Output Skew
- Gain/Return Loss
- Eye Pattern Generation
- Frequency Performance
- Output Rise and Fall Time
- V_{CMR} (Common Mode Range)

This Evaluation Board User's Manual Contains:

- Information on NB7L32MMNEVB Evaluation Board
- Appropriate Lab Setup
- Bill of Materials

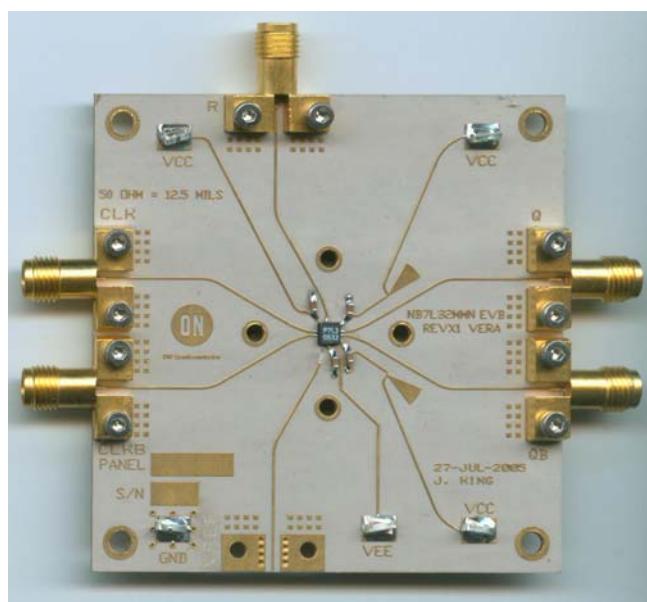


Figure 1. NB7L32M Evaluation Board

SETUP FOR TIME DOMAIN MEASUREMENTS

Table 1. BASIC EQUIPMENT

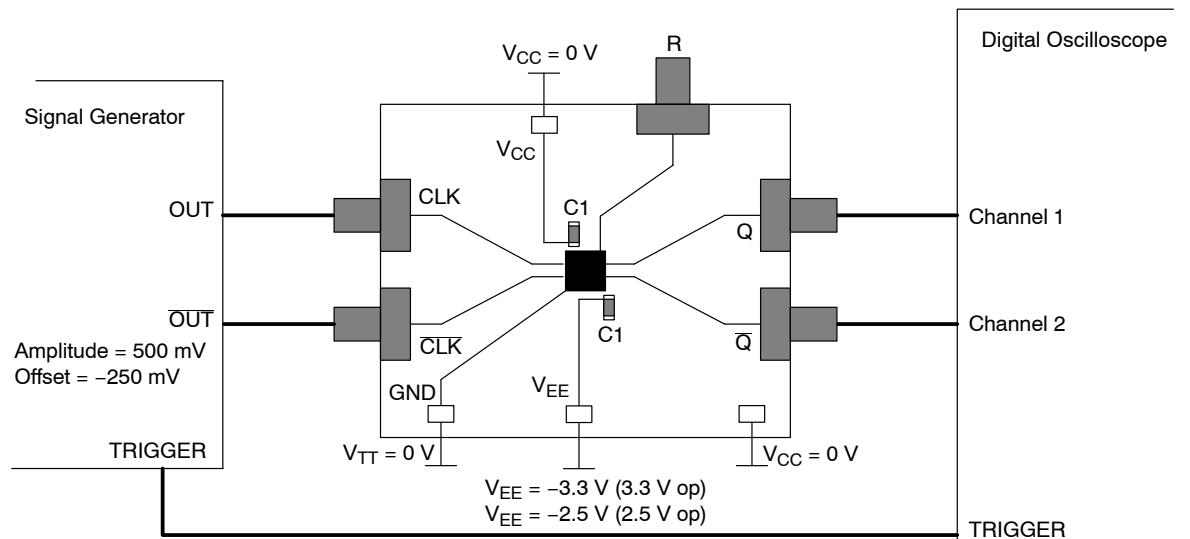
Description	Example Equipment (Note 1)	Qty.
Power Supply with 2 outputs	HP6624A	1
Oscilloscope	TDS8200 or TDS8000	1
Differential Signal Generator	HP 8133A, Advantest D3186	1
Matched high speed cables with SMA connectors	Storm, Semflex	4
Power Supply cables with clips		5

1. Equipment used to generate example measurements within this document.

Setup

Step 1: Connect Power

1a: Two power levels must be provided to the board for V_{CC} , V_{EE} , and GND via the surface mount clips.


Step 2: Connect Inputs

For Differential Mode (3.3 V and 2.5 V operation)

2a: Connect the differential output of the generator to the differential input of the device (CLK and \overline{CLK}).

Table 2. POWER SUPPLY CONNECTIONS

3.3 V Setup	2.5 V Setup
$V_{CC} = 0$ V	$V_{CC} = 0$ V
GND = 0 V	GND = 0 V
$V_{EE} = -3.3$ V	$V_{EE} = -2.5$ V

NOTE: All differential cable pairs **must be** matched.
All V_{CC} pins have to be connected for proper device operation.

Figure 2. NB7L32M Board Setup – Time Domain
(Differential Mode)

Setup (continued)**Step 3: Setup Input Signals**

3a: Set the signal generator amplitude to 400 mV.

NOTE: The signal generator amplitude can vary from 75 mV to 900 mV to produce a 400 mV DUT output.

3b: Set the signal generator offset to -200 mV (the center of a nominal NCML output).

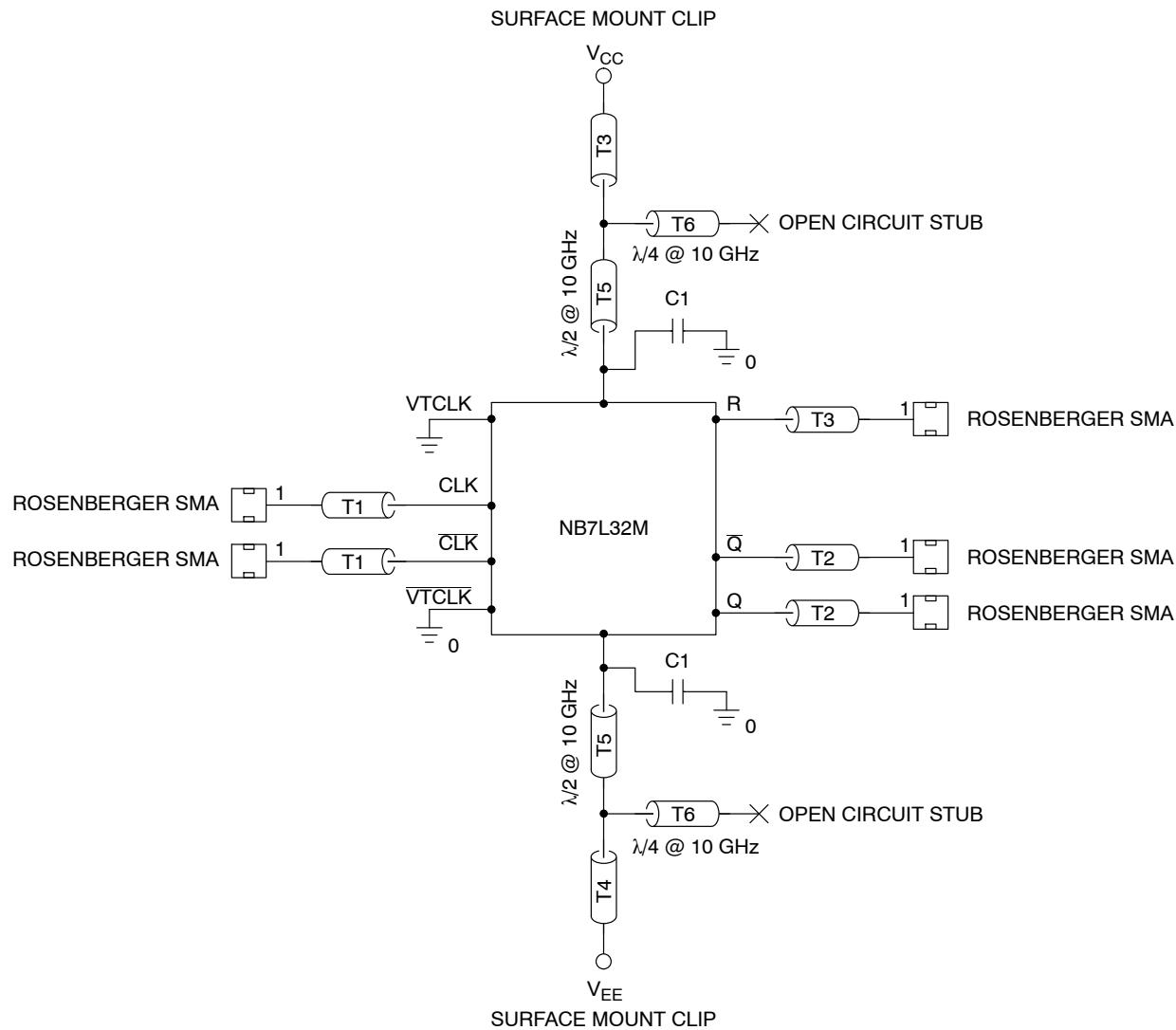
NOTE: The V_{CMR} (Input Common Mode Range) allows the signal generator offset to vary as long as V_{TH} is within the V_{CMR} range. Refer to the device data sheet for further information.

Set the generator output for a PRBS data signal, or for a square wave clock signal with a 50% duty cycle.

Step 4: Connect Output Signals

4a: Connect the outputs of the device (Q0, Q1, ...) to the oscilloscope. The oscilloscope sampling head must have internal $50\ \Omega$ termination to ground.

NOTE: Where a single output is being used, the unconnected output for the pair must be terminated to V_{CC} through a $50\ \Omega$ resistor for best operation. Unused pairs may be left unconnected.


MORE INFORMATION ABOUT EVALUATION BOARD**Design Considerations for >10 GHz operation**

While the NB7L32M is specified to operate at 10 GHz, this evaluation board is designed to support operating frequencies up to 20 GHz.

The following considerations played a key role to ensure this evaluation board achieves high-end microwave performance:

- Optimal SMA connector launch
- Minimal insertion loss and signal dispersion
- Accurate Transmission line matching ($50\ \Omega$)
- Distributed effects while bypassing and noise filtering

NB7L32MMNEVB

NOTE: C1 = Decoupling cap and $T_x = 50 \Omega$ Transmission line

Figure 3. Evaluation Board Schematic

Table 3. BILL OF MATERIALS

Part No	Qty	Description	Manufacturer	WEB address
NB7L32MMN	1	2.5 V / 3.3 V, 14 GHz $\div 2$ Clock Divider with CML output and Internal Termination	ON Semiconductor	http://www.onsemi.com/NB7L32M
32K243-40ME3	5	Gold plated connector	Rosenberger	http://www.rosenberger.de
CO6BLBB2X5UX	4	2 MHz – 30 GHz capacitor	Dielectric Laboratories	http://www.dilabs.com
5016	5	Test point – Anvil	Keystone*	http://www.newark.com http://www.digikey.com

*Components are available through distribution.

Table 4. BOARD MATERIAL

Material	Thickness
Rogers 6002	5.0 mil
Copper Plating	32 mil

NB7L32MMNEVB

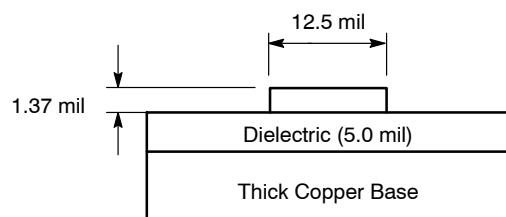
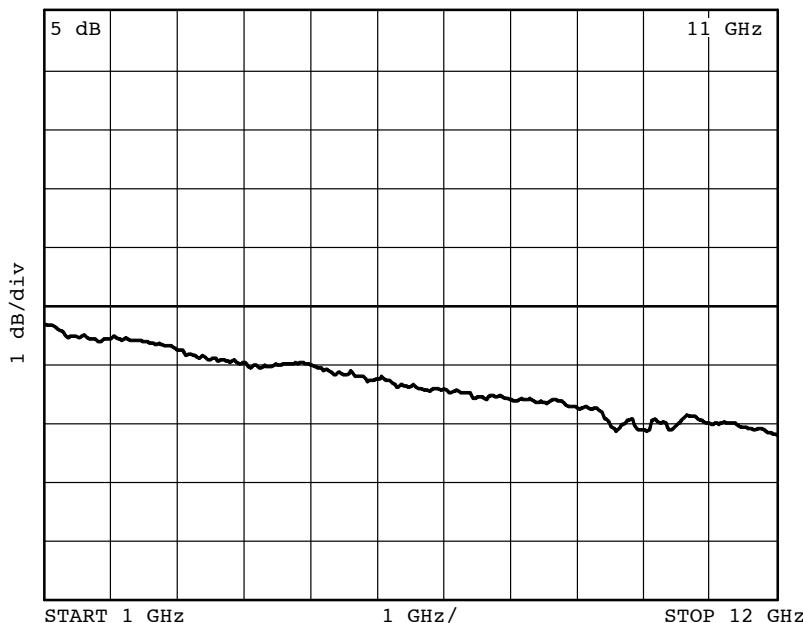



Figure 4. Board Stack-up

Figure 5. Layout Mask for NB7L32M

NOTE: The insertion loss curve can be used to calibrate out board loss if testing under small signal conditions.

Figure 6. Insertion Loss

ADDITIONAL EVALUATION BOARD INFORMATION

www.onsemi.com

In all cases, the most up-to-date information can be found on our website.

- Sample orders for devices and boards
- New Product updates
- Literature download/order
- IBIS and Spice models

References

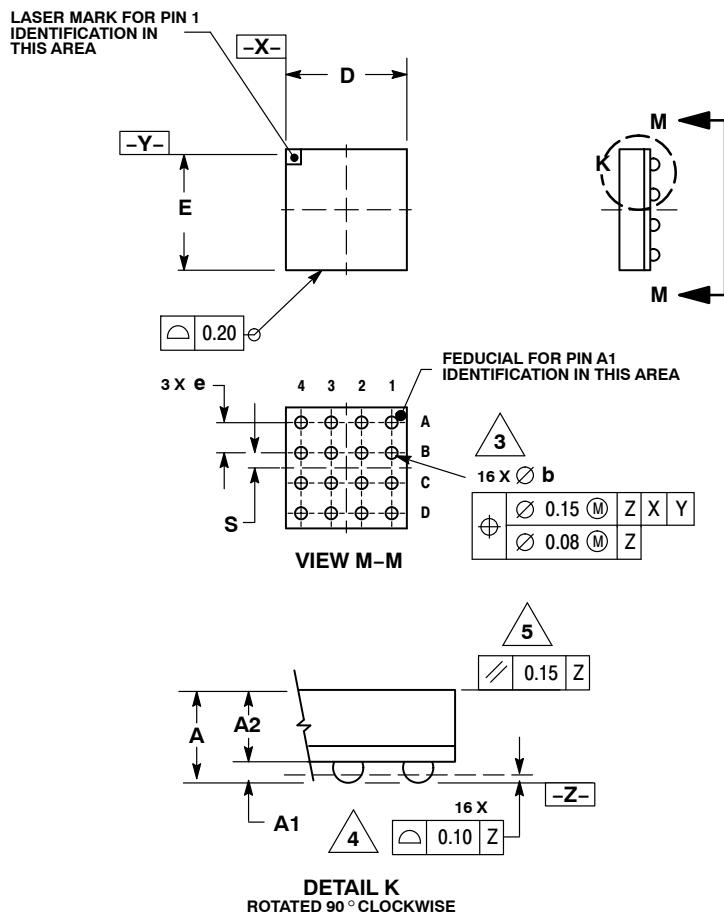
- NB7L32M/D Data Sheet.
- AND8077/D, Application Note, *GigaComm™ (SiGe) SPICE Modeling Kit*.
- AND8075/D, Application Note, *Board Mounting Considerations for the FCBGA Packages*.
- BRD8017/D, Brochure, *Clock and Data Management Solutions*.

ORDERING INFORMATION

Device	Package	Shipping [†]
NB7L32MMNG	QFN-16 (Pb-Free)	123 Units / Rail
NB7L32MMNR2G	QFN-16 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


FCBGA-16

BA SUFFIX

PLASTIC 4X4 (mm) BGA FLIP CHIP PACKAGE

CASE 489-01

ISSUE O

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z.
4. DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

DIM	MILLIMETERS	
	MIN	MAX
A	1.40	MAX
A1	0.25	0.35
A2	1.20	REF
b	0.30	0.50
D	4.00	BSC
E	4.00	BSC
e	1.00	BSC
S	0.50	BSC

GigaComm is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
 P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
 Phone: 421 33 790 2910
Japan Customer Focus Center
 Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.comOrder Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
 Sales Representative