

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

June 2002 Revised March 2004

NC7SPU04

TinyLogic® ULP Unbuffered Inverter

General Description

The NC7SPU04 is a single unbuffered inverter from Fairchild's Ultra Low Power (ULP) series of TinyLogic®. Ideal for applications where battery life is critical, this product is designed for ultra low power consumption within the V_{CC} operating range of 0.9V to 3.6V $V_{CC}. \label{eq:cc}$

The internal circuit is composed of a minimum of inverter stages, including the output buffer, to enable ultra low static and dynamic power.

The NC7SPU04, for lower drive requirements, is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve best in class speed operation while maintaining extremely low CMOS power dissipation.

Features

- 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- t_{PC}

4.0 ns typ for 3.0V to 3.6V $V_{\rm CC}$

5.0 ns typ for 2.3V to 2.7V V_{CC}

6.0 ns typ for 1.65V to 1.95V $\ensuremath{\text{V}_{\text{CC}}}$

7.0 ns typ for 1.40V to 1.60V $V_{\rm CC}$

11.0 ns typ for 1.10V to 1.30V $\ensuremath{V_{\text{CC}}}$

27.0 ns typ for 0.90V V_{CC}

- Power-Off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL})

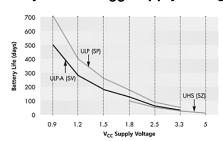
±2.6 mA @ 3.00V V_{CC}

±2.1 mA @ 2.30V V_{CC}

 ± 1.5 mA @ 1.65V V_{CC}

 ± 1.0 mA @ 1.40V $\rm V_{CC}$

 ± 0.5 mA @ 1.10V V_{CC}


 $\pm 10~\mu A~$ @ 0.9V V_{CC}

- Uses proprietary Quiet Series[™] noise/EMI reduction circuitry
- Ultra small MicroPak™ leadfree package
- Ultra Low dynamic power

Ordering Code:

Order Number	er Number Package Product Code Number Top Mark		Package Description	Supplied As		
NC7SPU04P5X	MAA05A	PU4	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel		
NC7SPU04L6X	MAC06A	N3	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel		

Battery Life vs. V_{CC} Supply Voltage

TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly.

Battery Life = $(V_{battery} *I_{battery} *.9)/(P_{device})/24hrs/day$ Where, $P_{device} = (I_{CC} * V_{CC}) + (C_{PD} + C_L) * V_{CC}^2 * f$

Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with C_L = 15 pF load

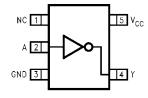
TinyLogic®, Quiet Series™, and MicroPak™ are trademarks of Fairchild Semiconductor Corporation.

Logic Symbol

Pin Descriptions

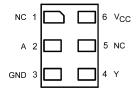
Pin Names	Description			
Α	Input			
Υ	Output			
NC	No Connect			

Function Table


		_
Υ	=	Α

Input	Output
Α	Υ
L	Н
Н	L

H = HIGH Logic Level L = LOW Logic Level


Connection Diagrams

Pin Assignments for SC70

(Top View)

Pad Assignments for MicroPak

(Top Thru View)

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \mbox{Supply Voltage (V$_{CC}$)} & -0.5\mbox{V to } +4.6\mbox{V} \\ \mbox{DC Input Voltage (V$_{IN}$)} & -0.5\mbox{V to } +4.6\mbox{V} \\ \end{array}$

DC Output Voltage (V_{OUT})

 $\begin{array}{ll} \mbox{HIGH or LOW State (Note 2)} & -0.5\mbox{V to V}_{\rm CC} + 0.5\mbox{V} \\ \mbox{V}_{\rm CC} = 0\mbox{V} & -0.5\mbox{V to 4.6\mbox{V}} \\ \mbox{DC Input Diode Current (I}_{\rm IK}) \mbox{V}_{\rm IN} < 0\mbox{V} & \pm 50\mbox{ mA} \\ \end{array}$

DC Output Diode Current (I_{OK}) $V_{OUT} > 0V$

 $\label{eq:VOUT} $$V_{OUT} < V_{CC}$$ +50 mA$$ DC Output Source/Sink Current (I_{OH}/I_{OL})$$ <math>\pm$ 50 mA

 $\operatorname{DC}\operatorname{V}_{\operatorname{CC}}$ or Ground Current per

Supply Pin (I_{CC} or Ground) \pm 50 mA Storage Temperature Range (T_{STG}) -65° C to +150 $^{\circ}$ C

Recommended Operating Conditions (Note 3)

Supply Voltage 0.9V to 3.6VInput Voltage (V_{IN}) 0V to 3.6V

Output Voltage (V_{OUT})

-50 mA

HIGH or LOW State $$\rm OV\ to\ V_{CC}$$ $\rm V_{CC}=\rm OV$ $\rm OV\ to\ 3.6V$

Output Current in I_{OH}/I_{OL}

 $\begin{array}{lll} {\rm V_{CC}} = 3.0 {\rm V} \; {\rm to} \; 3.6 {\rm V} & & \pm 2.6 \; {\rm mA} \\ {\rm V_{CC}} = 2.3 {\rm V} \; {\rm to} \; 2.7 {\rm V} & & \pm 2.1 \; {\rm mA} \\ {\rm V_{CC}} = 1.65 {\rm V} \; {\rm to} \; 1.95 {\rm V} & & \pm 1.5 \; {\rm mA} \\ \end{array}$

 $\begin{array}{lll} V_{CC} = 1.40 V \ to \ 1.60 V & \pm 1 \ mA \\ V_{CC} = 1.10 V \ to \ 1.30 V & \pm 0.5 \ mA \\ V_{CC} = 0.9 V & \pm 20 \ \mu A \end{array}$

Free Air Operating Temperature (T_A) -40°C to +85°C

Minimum Input Edge Rate (Δt/ΔV)

 $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns/V

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Syllibol		(V)	Min	Max	Min	Max	Units	Conditions
V _{IH}	HIGH Level	0.90	0.8 x V _{CC}		0.8 x V _{CC}			
	Input Voltage	$1.10 \le V_{CC} \le 1.30$	0.8 x V _{CC}		0.8 x V _{CC}			
		$1.40 \leq V_{CC} \leq 1.60$	0.8 x V _{CC}		0.8 x V _{CC}		v	
		$1.65 \leq V_{CC} \leq 1.95$	0.8 x V _{CC}		0.8 x V _{CC}		· ·	
		$2.30 \leq V_{CC} \leq 2.70$	0.8 x V _{CC}		0.8 x V _{CC}			
		$3.00 \leq V_{CC} \leq 3.60$	0.8 x V _{CC}		0.8 x V _{CC}			
V _{IL}	LOW Level	0.90		0.2 x V _{CC}		0.2 x V _{CC}		
	Input Voltage	$1.10 \le V_{CC} \le 1.30$		$0.2 \times V_{CC}$		$0.2 \times V_{CC}$		
		$1.40 \leq V_{CC} \leq 1.60$		$0.2 \times V_{CC}$		$0.2 \times V_{CC}$	v	
		$1.65 \leq V_{CC} \leq 1.95$		$0.2 \times V_{CC}$		$0.2 \times V_{CC}$	v	
		$2.30 \leq V_{CC} \leq 2.70$		$0.2 \times V_{CC}$		$0.2 \times V_{CC}$		
		$3.00 \leq V_{CC} \leq 3.60$		$0.2 \times V_{CC}$		$0.2 \times V_{CC}$		
V _{OH}	HIGH Level	0.90	V _{CC} - 0.2		V _{CC} - 0.2			$I_{OH} = -10 \mu A$
	Output Voltage	$1.10 \le V_{CC} \le 1.30$	V _{CC} - 0.2		V _{CC} - 0.2			
		$1.40 \leq V_{CC} \leq 1.60$	V _{CC} - 0.2		V _{CC} - 0.2			
		$1.65 \leq V_{CC} \leq 1.95$	V _{CC} - 0.2		V _{CC} - 0.2			$I_{OH} = -20 \mu A$
		$2.30 \leq V_{CC} \leq 2.70$	$V_{CC} - 0.2$		$V_{CC} - 0.2$			
		$3.00 \leq V_{CC} \leq 3.60$	V _{CC} - 0.2		V _{CC} - 0.2		V	
		$1.10 \le V_{CC} \le 1.30$	0.75 x V _{CC}		0.70 x V _{CC}			$I_{OH} = -0.5 \text{ mA}$
		$1.40 \le V_{CC} \le 1.60$	1.07		0.99			I _{OH} = -1 mA
		$1.65 \le V_{CC} \le 1.95$	1.24		1.22		1	$I_{OH} = -1.5 \text{ mA}$
		$2.30 \le V_{CC} \le 2.70$	1.95		1.87			I _{OH} = -2.1 mA
		$3.00 \leq V_{CC} \leq 3.60$	2.61		2.55		1	$I_{OH} = -2.6 \text{ mA}$

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
		(V)	Min	Max	Min	Max	Onits	Conditions
V _{OL}	LOW Level	0.90		0.1		0.1		$I_{OL} = 10 \mu A$
	Output Voltage	$1.10 \le V_{CC} \le 1.30$		0.1		0.1		
		$1.40 \leq V_{CC} \leq 1.60$		0.1		0.1		
		$1.65 \leq V_{CC} \leq 1.95$		0.1		0.1		$I_{OL} = 20 \mu A$
		$2.30 \leq V_{CC} \leq 2.70$		0.1		0.1		
		$3.00 \leq V_{CC} \leq 3.60$		0.1		0.1	V	
		$1.10 \le V_{CC} \le 1.30$		0.30 x V _{CC}		0.30 x V _{CC}		$I_{OL} = 0.5 \text{ mA}$
		$1.40 \le V_{CC} \le 1.60$		0.31		0.37		I _{OL} = 1 mA
		$1.65 \le V_{CC} \le 1.95$		0.31		0.35		I _{OL} = 1.5 mA
		$2.30 \le V_{CC} \le 2.70$		0.31		0.33		I _{OL} = 2.1 mA
		$3.00 \le V_{CC} \le 3.60$		0.31		0.33		I _{OL} = 2.6 mA
I _{IN}	Input Leakage Current	0.90 to 3.60		±0.1		±0.5	μΑ	$0 \le V_I \le 3.6V$
I _{CC}	Quiescent Supply Current	0.90 to 3.60		0.9		0.9	μΑ	$V_I = V_{CC}$ or GND

AC Electrical Characteristics

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PHL}	Propagation Delay	0.90		27						
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	3.5	11	21.8	3.0	34.3			
		$1.40 \leq V_{CC} \leq 1.60$	2.5	7	14.8	2.0	15.0	ns	C _L = 10 pF	Figures 1, 2
		$1.65 \leq V_{CC} \leq 1.95$	2.0	6	12.0	1.5	12.2	115	$R_L = 1 M\Omega$	
		$2.30 \leq V_{CC} \leq 2.70$	1.5	5	9.4	1.0	9.9			
		$3.00 \leq V_{CC} \leq 3.60$	1.0	4	8.3	1.0	9.0			
t _{PHL}	Propagation Delay	0.90		30						
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	4.0	11	22.8	3.5	37.3			Figures 1, 2
		$1.40 \leq V_{CC} \leq 1.60$	3.0	8	15.5	2.5	16.5	ns	C _L = 15 pF	
		$1.65 \leq V_{CC} \leq 1.95$	2.5	6	12.6	2.0	13.6	115	$R_L = 1 M\Omega$	
		$2.30 \leq V_{CC} \leq 2.70$	2.0	5	9.9	1.5	10.8			
		$3.00 \leq V_{CC} \leq 3.60$	1.5	4	8.7	1.0	9.5			
t _{PHL}	Propagation Delay	0.90		32						
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	5.0	13	25.9	4.0	46.3			
		$1.40 \leq V_{CC} \leq 1.60$	4.0	9	17.8	3.5	18.2	ns	C _L = 30 pF	Figures
		$1.65 \leq V_{CC} \leq 1.95$	3.0	7	14.4	2.0	15.9	113	$R_L = 1 M\Omega$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	2.0	6	11.3	1.5	12.8			
		$3.00 \leq V_{CC} \leq 3.60$	1.5	5	9.2	1.0	10.7			
C _{IN}	Input Capacitance	0		2.0				pF		
C _{OUT}	Output Capacitance	0		4.0				pF		
C _{PD}	Power Dissipation	0.9 to 3.60		8				pF	$V_I = 0V \text{ or } V_{CC},$ f = 10 MHz	
	Capacitance								I = IU IVIHZ	

AC Loading and Waveforms

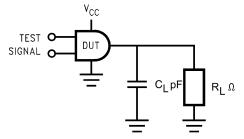


FIGURE 1. AC Test Circuit

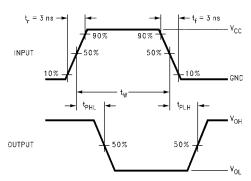
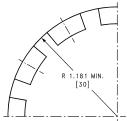



FIGURE 2. AC Waveforms

Symbol	v_cc									
- Cy201	$3.3V \pm 0.3V$	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$	1.5V ± 0.10V	1.2V ± 0.10V	0.9V				
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2				
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2				

Tape and Reel Specification TAPE FORMAT for SC70 Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Empty Sealed P5X 3000 Filled Sealed Carrier Trailer (Hub End) Sealed 75 (typ) Empty TAPE DIMENSIONS inches (millimeters) Ø 0.061±0.002 TYP. [1.55±0.05] 0.157 TYP. Ø 0.079±0.002 TYP. [2.0±0.05] 0.069 [1.75] [4] 3° MAX. TYP. B AT TANGENT POINTS SECTION B-B DIRECTION OF FEED -A TYP @ TANGENT POINTS CAVITY SYMM

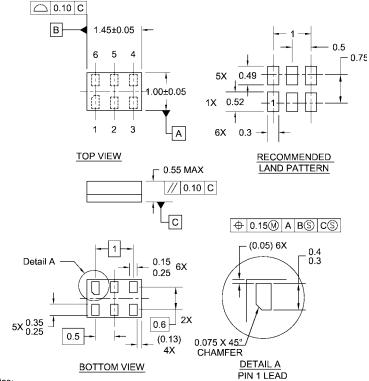
BEND RADIUS NOT TO SCALE

Tape and Reel Specification (Continued) TAPE FORMAT for MicroPak Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Sealed Empty L6X Carrier 5000 Filled Sealed Trailer (Hub End) 75 (typ) **Empty** Sealed TAPE DIMENSIONS inches (millimeters) 1.75±0.10 3.50±0.05 8.00 +0.30 -0.10 1.15±0.05 -ø 0.50 ±0.05 SECTION B-B SCALE:10X DIRECTION OF FEED-0.254±0.020 ┌ 0.70±0.05 5° MAX 1.60±0.05 SECTION A-A SCALE:10X **REEL DIMENSIONS** inches (millimeters) TAPE SLOT **DETAIL X DETAIL X** SCALE: 3X В D N W1 W2 W3 Tape С Α Size 0.331 + 0.059/-0.000 7.0 0.059 0.512 0.795 2.165 0.567 W1 + 0.078/-0.039 8 mm (177.8) (1.50)(13.00)(20.20)(55.00) $(8.40 + 1.50 /\!-0.00)$ (W1 + 2.00/-1.00)(14.40)

Physical Dimensions inches (millimeters) unless otherwise noted October 125 o

NOTES:

- A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A.
- B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.


C. DIMENSIONS ARE IN MILLIMETERS.

MAA05ARevC

DETAIL A

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide Package Number MAA05A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

- Notes:
- 1. JEDEC PACKAGE REGISTRATION IS ANTICIPATED 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06ARevB

6-Lead MicroPak, 1.0mm Wide Package Number MAC06A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative