imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

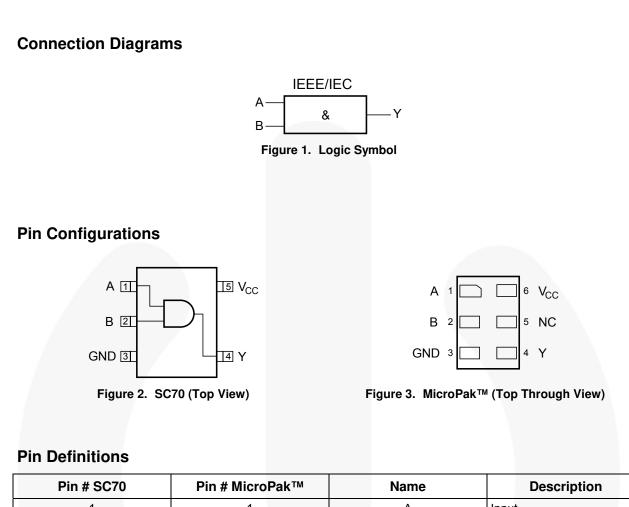
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

NC7SVL08 TinyLogic[®] Low-I_{CCT} Two-Input AND Gate

Features

- 0.9V to 3.6V V_{CC} Supply Operation
- 3.6V Over-Voltage Tolerant I/Os at V_{CC} from 0.9V to 3.6V
- Power-Off High-Impedance Inputs and Outputs
- Proprietary Quiet Series[™] Noise / EMI Reduction Circuitry
- Ultra-Small MicroPak[™] Packages
- Ultra-Low Dynamic Power


Description

The NC7SVL08 is a single two-input AND gate with a low-I_{CCT} input design from Fairchild's Ultra-Low Power (ULP-A) series of TinyLogic[®]. The NC7SVL08 features very low quiescent current, even when the input voltage is lower than the V_{CC} supply. This feature services mobile handset applications very well, allowing for direct interface with baseband processor general-purpose I/Os. Since mobile devices rely on a battery supply, the NC7SVL08 facilitates lower power consumption in mixed-voltage rail environments.

This product is designed on an advanced CMOS technology for a wide low-voltage operating range (0.9V to 3.6V V_{CC}), high drive needs (up to 24mA), and speed (maximum propagation delay of 3.5ns, V_{CC}=3.3V). It achieves this performance while maintaining low CMOS power dissipation.

Ordering Information

Part Number	Top Mark	Package	Packing Method
NC7SVL08P5X	L08	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3000 Units on Tape & Reel
NC7SVL08L6X	CE	6-Lead MicroPak™, 1.00mm Wide	5000 Units on Tape & Reel
NC7SVL08FHX	CE	6-Lead, MicroPak2™, 1x1mm Body, .35mm Pitch	5000 Units on Tape & Reel

Pin # SC70	Pin # MicroPak™	Name	Description
1	1	A	Input
2	2	В	Input
3	3	GND	Ground
4	4	Y	Output
	5	NC	No Connect
5	6	Vcc	Supply Voltage

Function Table

Y = AB

Inp	Output	
A	В	Y
L	L	L
L	н	
Н	L	L
Н	Н	Н

L = Low Logic Level

H = High Logic Level

NC7SVL08 — TinyLogic[®] Low-I_{CCT} Two-Input AND Gate

NC7SVL08 — TinyLogic[®] Low-I_{CCT} Two-Input AND Gate

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

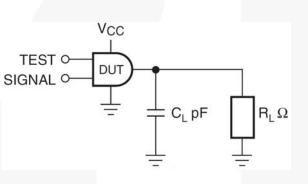
Symbol	Para	ameter	Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	4.6	V
V _{IN}	DC Input Voltage		-0.5	4.6	V
V		HIGH or LOW State ⁽¹⁾	-0.5	V _{CC} to +0.5	V
Vout	DC Output Voltage	V _{CC} =0V	-0.5	4.6	V
I _{IK}	DC Input Diode Current	$V_{IN} < 0V$		-50	mA
	DC Output Diada Current	V _{OUT} < 0V		-50	
loк	DC Output Diode Current	$V_{OUT} > V_{CC}$		+50	mA
I _{OH} / I _{OL}	DC Output Source/Sink Curren		±50	mA	
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per	Supply Pin		±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under B	ias		+150	°C
TL	Junction Lead Temperature (Se	oldering, 10 Seconds)		+260	°C
		SC70-5		150	
PD	Power Dissipation at +85°C	MicroPak™-6		130	mW
		MicroPak2™-6		120	
ESD	Human Body Model	JEDEC: JESD22-A114		4000	V
ESD	Charged Device Model	JEDEC: JESD22-C101		2000	v

Note:

1. The I_o maximum rating must be observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.


Symbol	Parameter	Conditions	Min.	Max.	Unit	
Vcc	Supply Voltage		0.9	3.6	V	
V _{IN}	Input Voltage ⁽²⁾		0	3.6	V	
V	Output Voltage	HIGH or LOW State	0	Vcc	v	
VOUT	V _{OUT} Output Voltage	V _{CC} =0V	0	3.6	Ň	
	V _{CC} =3.0V to 3.6V		±24.0			
		V _{CC} =2.3V to 2.7V		±18.0		
1 /1	Output Current in L /L	V _{CC} =1.65V to 1.95V		±6.0	mA	
I _{OH} / I _{OL}	Output Current in I _{OH} / I _{OL}	V _{CC} =1.40V to 1.60V		±4.0		
		V _{CC} =1.10V to 1.30V		±2.0		
		V _{CC} =0.9V		±0.1	μA	
T _A	Free Air Operating Temperature		-40	+85	°C	
Δt / ΔV	Minimum Input Edge Rate	V _{IN} =0.8V to 2.0V, V _{CC} =3.0V		10	ns/V	
		SC70-5		425		
θ_{JA}	Thermal Resistance	MicroPak™-6		500	°C/W	
		MicroPak2™-6		560		

Note:

2. Unused inputs must be held HIGH or LOW. They may not float.

•		V _{cc} Conditions		T _A =2	25°C	T _A =-40 to 85°C		Units
Symbol	Parameter	Vcc	Conditions	Min.	Max.	Min.	Max.	Units
		0.90		$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		
		1.10 ≤ V _{CC} ≤ 1.30		$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		
	HIGH Level Input	$1.40 \le V_{CC} \le 1.60$		$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		
VIH	Voltage	1.65 ≤ V _{CC} ≤ 1.95		0.9		0.9		V
		$2.30 \le V_{CC} \le 2.70$		1.5		1.5		
		$2.70 \le V_{CC} \le 3.60$		1.5		1.5		
		0.90		-	0.25 x V _{CC}		0.25 x V _{CC}	
		1.10 ≤ V _{CC} ≤ 1.30			0.25 x V _{CC}		0.25 x V _{CC}	
	LOW Level Input Voltage	$1.40 \le V_{CC} \le 1.60$			0.25 x V _{CC}		0.25 x V _{CC}	
VIL		$1.40 \le V_{\rm CC} \le 1.00$ $1.65 \le V_{\rm CC} \le 1.95$			0.25 x V _{CC}		0.25 x V _{CC}	V
		$2.30 \le V_{CC} \le 2.70$ $2.70 \le V_{CC} \le 3.60$			0.7		0.7	
				N/ 0.4	0.8	N/ 0.4	0.8	
		0.90	-	V _{CC} - 0.1		V _{CC} - 0.1		
		$1.10 \le V_{CC} \le 1.30$	_	V _{CC} - 0.1		V _{CC} - 0.1		
		$1.40 \le V_{CC} \le 1.60$	I _{OH} =-100µА	V _{CC} - 0.2		V _{CC} - 0.2		
		$1.65 \le V_{CC} \le 1.95$		V _{CC} - 0.2		V _{CC} - 0.2		
		$2.30 \le V_{\rm CC} \le 2.70$	-	V _{CC} - 0.2		V _{CC} - 0.2		
		$2.70 \le V_{\rm CC} \le 3.60$		V _{CC} - 0.2		V _{CC} - 0.2		
	HIGH Level Output	$1.10 \le V_{CC} \le 1.30$	I _{OH} =-2mA	0.75 x V _{CC}		$0.75 \ x \ V_{CC}$		
Voh	Voltage	$1.40 \le V_{CC} \le 1.60$	I _{OH} =-4mA	$0.75 \times V_{CC}$		$0.75 \text{ x } V_{CC}$		V
		1.65 ≤ V _{CC} ≤ 1.95	I _{OH} =-6mA	1.25		1.25		
		$2.30 \leq V_{\rm CC} \leq 2.70$	10H01174	2.0		2.0		
		$2.30 \le V_{CC} \le 2.70$	lau= 12mΔ	1.8		1.8		-
		$2.70 \leq V_{\rm CC} \leq 3.60$	50	2.2		2.2		
		$2.30 \leq V_{\rm CC} \leq 2.70$	l = 10mA	1.7		1.7		
		$2.70 \le V_{CC} \le 3.60$	I _{OH} =-18mA	2.4		2.4		
		$2.70 \le V_{\rm CC} \le 3.60$	I _{OH} =-24mA	2.2		2.2		
		0.90			0.10		0.10	
		$1.10 \le V_{CC} \le 1.30$			0.10		0.10	
		$1.40 \le V_{CC} \le 1.60$			0.20		0.20	
		1.65 ≤ V _{CC} ≤ 1.95	Ι _{ΟL} =100μΑ		0.20		0.20	
		2.30 ≤ V _{CC} ≤ 2.70			0.20		0.20	
		$2.70 \le V_{CC} \le 3.60$			0.20		0.20	
	LOW Level Output	$1.10 \le V_{CC} \le 1.30$	I _{OL} =2mA		0.25 x V _{CC}		0.25 x V _{CC}	
V _{OL}	Voltage	$1.40 \le V_{CC} \le 1.60$	I _{OL} =4mA		0.25 x V _{CC}		0.25 x V _{CC}	V
	, , , , , , , , , , , , , , , , , , ,	$1.65 \le V_{CC} \le 1.95$	I _{OL} =6mA		0.30		0.30	
		$2.30 \le V_{CC} \le 2.70$			0.40		0.40	
		$2.70 \le V_{CC} \le 3.60$	I _{OL} =12mA		0.40		0.40	
		$2.30 \le V_{CC} \le 2.70$			0.60		0.40	
		$2.70 \le V_{CC} \le 3.60$	I _{OL} =18mA		0.40		0.40	
		$2.70 \le V_{CC} \le 3.60$ $2.70 \le V_{CC} \le 3.60$	I _{OL} =24mA		0.40		0.40	
I _{IN}	Input Leakage Current	0.90 to 3.60	$0 \le V_{\rm IN} \le 3.6V$		±0.1		±0.5	μA
I _{OFF}	Power Off Leakage Current	0	$0 \le (V_{IN}, V_O) \le$ 3.6V		0.5		0.5	μA
	Quiescent Supply		V _{IN} =V _{CC} or GND		0.9		0.9	
Icc	Current	0.90 to 3.60	$V_{\rm CC} \le V_{\rm IN} \le 3.6V$		0.0		±0.9	μA
		1.95	V _{IN} =0.9V		6		8	
I _{CCT}	Increase in I _{CC} per Input	3.6	V _{IN} =0.5V		6		8	μA

Cumhal	Devemeter	v	Conditions		T _A =25°	С	T _A =-40 to 85°			Figure
Symbol Parameter	V _{cc}	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	Figure	
		0.90	C_L =15pF, R _L =1M Ω		45.0					
		$1.10 \le V_{CC} \le 1.30$	C _L =15pF,	3.5	8.2	17.5	3.0	30.5	ns	Figure 4, Figure 5
t _{PHL} , t _{PLH}	Propagation Delay	$1.40 \leq V_{\rm CC} \leq 1.60$	R _L =2kΩ	1.5	4.0	7.0	1.5	7.5		
		$1.65 \leq V_{\rm CC} \leq 1.95$		1.1	3.0	5.5	1.0	6.0		
		$2.30 \leq V_{CC} \leq 2.70$	C _L =30pF, R _I =500Ω	0.6	2.2	4.0	0.6	4.5		
		$2.70 \leq V_{CC} \leq 3.60$	NL 00032	0.5	1.6	3.5	0.5	4.0		
CIN	Input Capacitance	0			3				pF	
C_{PD}	Power Dissipation Capacitance	0.90 to 3.60	V _{IN} =0V or V _{CC} , f=10MHz		5				pF	

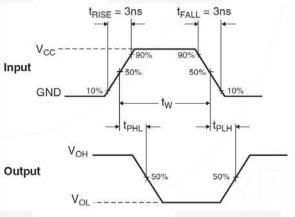
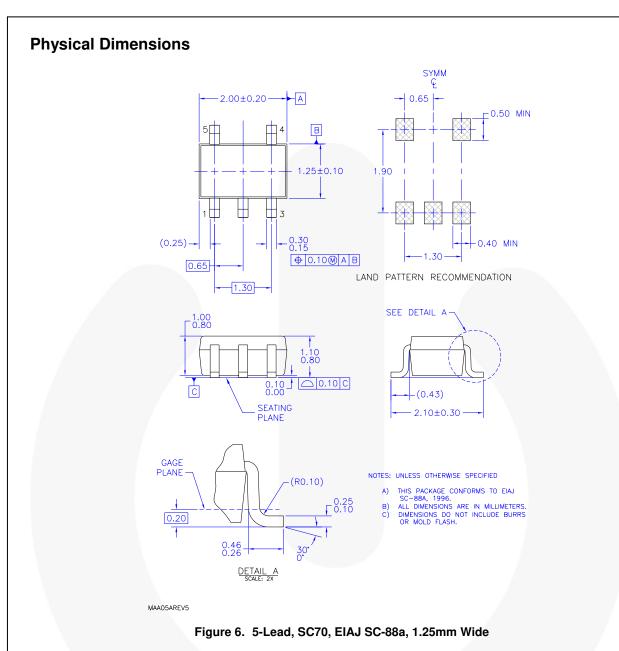
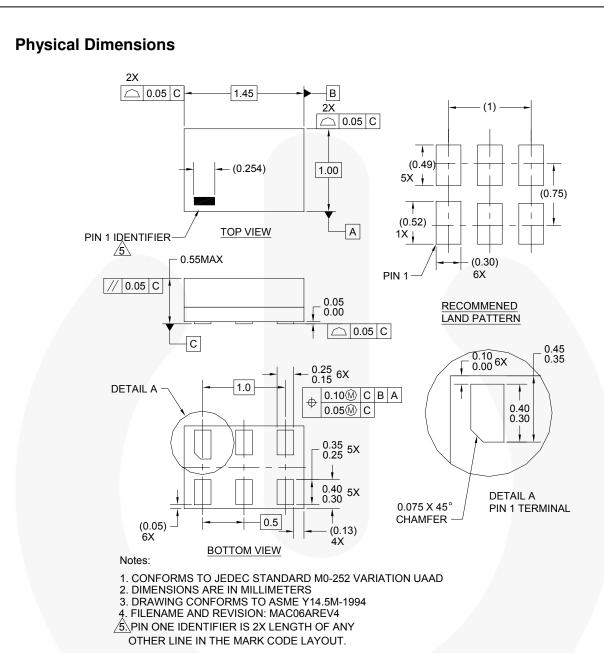



Figure 4. AC Test Circuit

Figure 5. AC Waveforms

Symbol	V _{cc}					
	3.3V ± 0.3V	2.5V ± 0.2V	1.8V ± 0.15V	1.5V ± 0.1V	1.2V ± 0.1V	0.9V
V _{mi}	1.5V	V _{CC} / 2				
V _{mo}	1.5V	V _{CC} / 2				


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

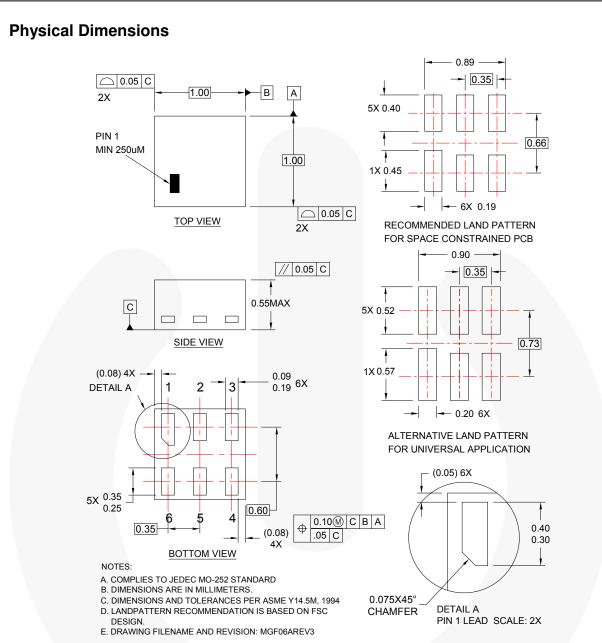
Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/products/analog/pdf/sc70-5_tr.pdf</u>.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Figure 7. 6-Lead, MicroPak™, 1.0mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf</u>.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

NC7SVL08 — TinyLogic[®] Low-I_{CCT} Two-Input AND Gate

Figure 8. 6-Lead, MicroPak™2, 1x1mm Body, .35mm Pitch

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/packaging/MicroPAK2_6L_tr.pdf.</u>

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
FHX	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

NC7SVL08 — TinyLogic[®] Low-I_{CCT} Two-Input AND Gate

SEMICONDUCTO

TRADEMARKS

AX-CAPTM*

CTL™

ESBC™

F

FACT®

FAST®

FPS™

®

Fairchild®

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ Auto-SPM** FRFET Global Power Resource^s Green FPS™ Build it Now™ Green FPS™e-Series™ CorePLUS™ Gmay™ **CorePOWER™** GTOM CROSSVOLT" IntelliMAX™ Current Transfer Logic™ ISOPLANAR™ DEUXPEED MegaBuck™ Dual Cool™ MICROCOUPLERM EcoSPARK® MicroFET™ EfficientMax™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ Fairchild Semiconductor® mWSaver™ FACT Quiet Series™ OptoHiT™ OPTOLOGIC® **OPTOPLANAR®** Fast√Core™ FETBench™

Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFET QSTM Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™6 SuperSOT™8 SupreMOS® SvncFET™ Sync-Lock™

wer TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTOM TinyPower™

The Right Technology for Your Success™

The Power Franchise®

TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT*** µSerDes™

Se Des UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ XSTM

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

PDP SPM

DISCLAIMER

FlashWriter®*

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 152

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC