

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ON Semiconductor®

NC7SZ14 TinyLogic[®] UHS Inverter with Schmitt Trigger Input

Features

- Ultra-High Speed: t_{PD} 3.7ns (Typical) into 50pF at 5V V_{CC}
- High Output Drive: ±24mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Matches Performance of LCX when Operated at 3.3V V_{CC}
- Pow er Down High Impedance Inputs/Outputs
- Over-Voltage Tolerance Inputs Facilitate 5V to 3V Translation
- Proprietary Noise/EMI Reduction Circuitry
- Ultra-Small MicroPak™ Packages
- Space-Saving SOT23 and SC70 Packages

Description

The NC7SZ14 is a single inverter with Schmitt trigger input from ON Semiconductor's Ultra-High Speed (UHS) series of TinyLogic®. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive while maintaining low static power dissipation over a very broad $V_{\rm CC}$ operating range. The device is specified to operate over the 1.65V to 5.5V $V_{\rm CC}$ range. The inputs and outputs are high-impedance when $V_{\rm CC}$ is 0V. Inputs tolerate voltages up to 6V independent of $V_{\rm CC}$ operating voltage.

Ordering Information

Part Number	Operating Temperature	Top Mark	© Eco Status	Package	Packing Method
NC7SZ14M5X	-40 to +85°C	7Z14	RoHS	5-Lead, SOT23, JEDEC MO-178, 1.6mm	3000 Units on Tape & Reel
NC7SZ14P5X	-40 to +85°C	-40 to +85°C Z14 RoHS 5-Lead SC70, EIAJ SC-88a, 1.25mm Wide		3000 Units on Tape & Reel	
NC7SZ14L6X	4L6X -40 to +85°C B6 RoHS 6-Lead MicroPak™, 1.00mm Wide		6-Lead MicroPak™, 1.00mm Wide	5000 Units on Tape & Reel	
NC7SZ14FHX	-40 to +85°C	В6	Green	6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch	5000 Units on Tape & Reel

Connection Diagrams

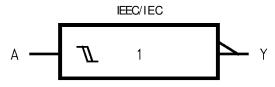
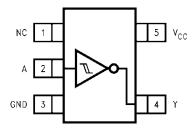



Figure 1. Logic Symbol

Pin Configurations

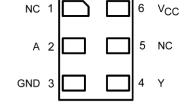


Figure 2. SOT23 and SC70 (Top View)

Figure 3. MicroPak (Top Through View)

Pin Definitions

Pin # SOT23 and SC70	Pin # MicroPak	Name	Description
1	1, 5	NC	No Connect
2	2	А	Input
3	3	GND	Ground
4	4	Υ	Output
5	6	VCC	Supply Voltage

Function Table

Y = /A

Inputs	Output
Α	Y
L	Н
Н	L

H = HIGH Logic Level

L = LOW Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	Min.	Max.	Unit		
V _{CC}	Supply Voltage		-0.5	6.0	V	
V _{IN}	DC Input Voltage		-0.5	6.0	V	
V _{OUT}	DC Output Voltage		-0.5	6.0	V	
lık	DC Input Diode Current	V _{IN} < -0.5V		-50	mA	
ЧΚ	Do input blode ourrent	$V_{IN} > 6.0V$		+20	IIIA	
Юк	DC Output Diode Current	V _{OUT} < -0.5V		-50	mA	
IOK	Do Output Diode Ourrent	$V_{OUT} > 6.0V$, $V_{CC}=GND$		+20	IIIA	
Юит	DC Output Current		±50	mA		
Icc or Ignd	DC V _{CC} or Ground Current			±50	mA	
T _{STG}	Storage Temperature Range		-65	+150	°C	
TJ	Junction Temperature Under B	ias		+150	°C	
TL	Junction Lead Temperature (So	oldering, 10 Seconds)		+260	°C	
		SOT-23		200		
P_{D}	Power Discipation at 1959C	SC70-5		150	mW	
LD.	Pow er Dissipation at +85°C	MicroPak-6		130	111100	
		MicroPak2-6		120	1	
ESD	Human Body Model, JEDEC:JE	Human Body Model, JEDEC:JESD22-A114			V	
ESD	Charge Device Model, JEDEC:J		2000	·		

Recommended Operating Conditions⁽¹⁾

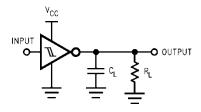
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V _{CC}	Supply Voltage Operating		1.65	5.50	V
A CC	Supply Voltage Data Retention		1.5	5.5	1
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
		SOT-23		300	
0	Thermal Resistance	SC70-5		425	°C/W
$\theta_{\sf JA}$		MicroPak-6		500]
		MicroPak2-6		560	1

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	V _{CC} (V)	Conditions	T _A =+25°C		_{A=+25°C} T _{A=-40} to +85°	to +85°C	C 	
Symbol	rai ailletei	VCC(V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
		1.65		0.60	1.00	1.40	0.60	1.40	
		1.80		0.70	1.10	1.50	0.70	1.50	
.,	Positive Threshold	2.30		1.00	1.40	1.80	1.00	1.80	
V_P	Voltage	3.00		1.30	1.75	2.20	1.30	2.20	
		4.50		1.90	2.45	3.10	1.90	3.10	
		5.50		2.20	2.90	3.60	2.20	3.60	
		1.65		0.20	0.50	0.80	0.20	0.80	
		1.80		0.25	0.55	0.90	0.25	0.90	
	Negative Threshold	2.30		0.40	0.75	1.15	0.40	1.15	١,
V_N	Voltage	3.00		0.60	1.00	1.50	0.60	1.50	\
		4.50		1.00	1.43	2.00	1.00	2.00	
		5.50		1.20	1.70	2.30	1.20	2.30	
		1.65		0.10	0.48	0.90	0.10	0.90	
		1.80		0.15	0.54	1.00	0.15	1.00	
.,		2.30		0.25	0.65	1.10	0.25	1.10	١,
V_H	Hysteresis Voltage	3.00		0.40	0.77	1.20	0.40	1.20	V
		4.50		0.60	1.01	1.50	0.60	1.50	
		5.50		0.70	1.18	1.70	0.70	1.70	
		1.65		1.55	1.65		1.55		1
		1.80		1.70 1.80	1.70				
	HIGH Level Output Voltage	2.30	V _{IN} =V _{IL} , I _{OH} =-100μA	2.20	2.30		2.20		
		3.00	10H=-100μΑ	2.90	3.00		2.90		
		4.50		4.40	4.50		4.40		
V_{OH}		1.65	I _{OH} =-4mA	1.29	1.52		1.29		٧
		2.30	I _{OH} =-8mA	1.90	2.15		1.90		
		3.00	I _{OH} =-16mA	2.40	2.80		2.40		
		3.00	I _{OH} =-24mA	2.30	2.68		2.30		
		4.50	I _{OH} =-32mA	3.80	4.20		3.80		
		1.65	<u> </u>		0.00	0.10		0.10	
		1.80			0.00	0.10		0.10	
		2.30	V _{IN} =V _{IH} , I _{OL} =100μA		0.00	0.10		0.10	
		3.00			0.00	0.10		0.10	
	LOW Level Output	4.50			0.00	0.10		0.10	
V_{OL}	Voltage	1.65	I _{OL} =4mA		0.08	0.24		0.24	٧
		2.30	I _{OL} =8mA		0.10	0.30		0.30	
		3.00	I _{OL} =16mA		0.15	0.40		0.40	
		3.00	I _{OL} =24mA		0.22	0.55		0.55	
		4.50	I _{OL} =32mA		0.22	0.55		0.55	
I _{IN}	Input Leakage Current	0 to 5.5	V _{IN} =5.5V, GND			±0.1		±1.0	μ
I _{OFF}	Power Off Leakage Current	0	V _{IN} or V _{OUT} =5.5V			1		10	μ
	Quiescent Supply Current					1.0		10	μΑ

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	Conditions	T _A =+25°C			T _A =-40 to +85°C		Units	Figure
				Min.	Тур.	Max.	Min.	Max.		
		1.65		2.0	9.1	15.0	2.0	15.6		
		1.80	$C_L=15pF$, $R_L=1M\Omega$	2.0	7.6	12.5	2.0	13.0	ns	Figure 4 Figure 4 Figure 5
	Propagation Delay	2.50 ± 0.20		1.0	5.0	9.0	1.0	9.5		
t_{PLH}, t_{PHL}		3.30 ± 0.30		1.0	3.7	6.3	1.0	6.5		
		5.00 ± 0.50		0.5	3.1	5.2	0.5	5.5		
		3.30 ± 0.30		1.5	4.4	7.2	1.5	7.5		
		5.00 ± 0.50	$R_L=500\Omega$	0.8	3.7	5.9	8.0	6.2		
C _{IN}	Input Capacitance	0.00			4				pF	
C _{PD}	Power Dissipation	3.30			24				Figu	Figure 6
ОРО	Capacitance ⁽²⁾	5.00			30					rigule 6

Note:

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD}=(C_{PD})(V_{CC})(f_{IN})+(I_{CC}static).

Note:

3. C_L includes load and stray capacitance; Input PRR=1.0MHz; t_W=500ns

Figure 4. AC Test Circuit

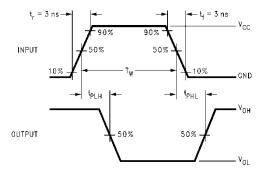
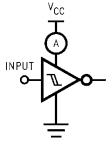



Figure 5. AC Waveforms

Note:

4. Input=AC Waveform; t_r=t_f=1.8ns; PRR=10MHz; Duty Cycle =50%.

Figure 6. I_{CCD} Test Circuit

Physical Dimensions

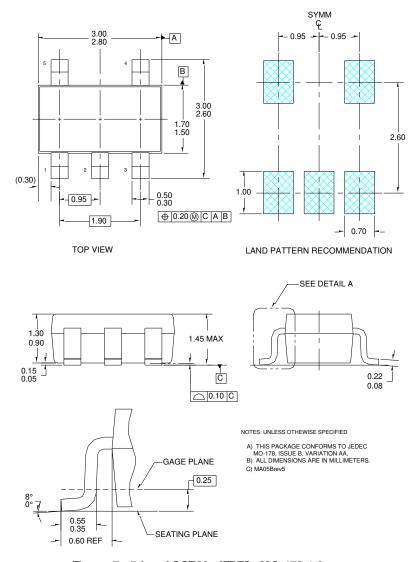


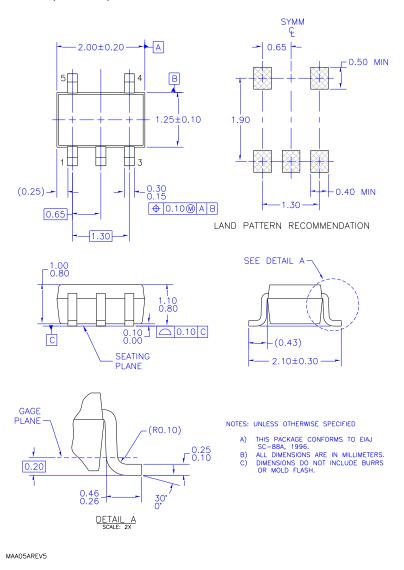
Figure 7. 5-Lead SOT23, JEDEC MO-178 1.6mm

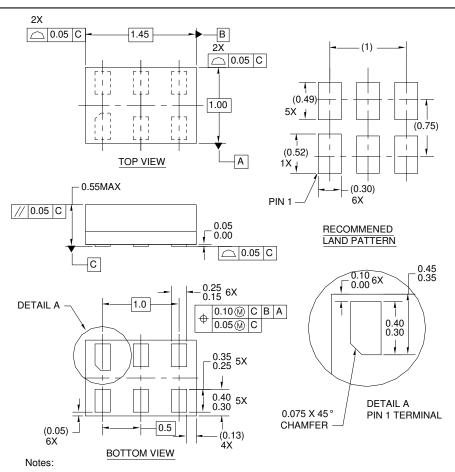
Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status	
	Leader (Start End)	125 (Typical)	Empty	Sealed	
M5X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (Typical)	Empty	Sealed	

Physical Dimensions (Continued)




Figure 8. 5-Lead, SC70, EAJ SC-88a, 1.25mm Wide

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions (Continued)

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06AREVC

Figure 9. 6-Lead, MicroPak™, 1.0mm Wide

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Tape and Reel Specification

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

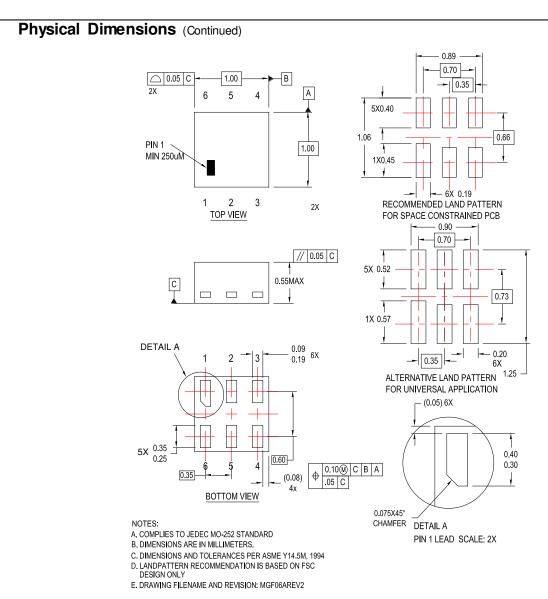


Figure 10.6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Tape and Reel Specification

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status	
	Leader (Start End)		Empty	Sealed	
FHX	Carrier	5000	Filled	Sealed	
	Trailer (Hub End)	75 (Typical)	Empty	Sealed	

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications using ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all daims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any cla

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semic onductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative