imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

May 1998 Revised August 2004 NC7SZ175 TinyLogic
Output
UHS D-Type Flip-Flop with Asynchronous Clear

FAIRCHILD

SEMICONDUCTOR

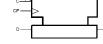
NC7SZ175 TinyLogic® UHS D-Type Flip-Flop with Asynchronous Clear

General Description

The NC7SZ175 is a single positive edge-triggered D-type CMOS Flip-Flop with Asynchronous Clear from Fairchild's Ultra High Speed Series of TinyLogic® in the space saving SC70 6-lead package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and output are high impedance when V_{CC} operating voltage. This single flip-flop will store the state of the D input that meets the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. A LOW input to Clear sets the Q output to LOW level. The Clear input is independent of clock.

Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- \blacksquare Ultra High Speed; $\rm t_{PD}$ 2.6 ns Typ into 50 pF at 5V $\rm V_{CC}$
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V $\rm V_{CC}$
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Proprietary noise/EMI reduction circuitry implemented

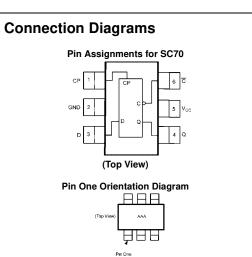

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ175P6X	MAA06A	Z75	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SZ175L6X	MAC06A	C4	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

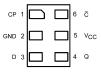
NC7SZ175

Logic Symbol IEEE/IEC ē—


Function Table

		Output					
	СР	D	C	Q			
	\	L	Н	L			
	~	н	н	н			
	\sim	Х	н	Qn			
	х	х	L	L			
IGI	GH Logic Level Qn = No change in data						

H = HIGH Logic Leve L = LOW Logic Level X = Immaterial


Pin Descriptions

Pin Names	Description
D	Data Input
CP	Clock Pulse Input
C	Clear Input
Q	Flip-Flop Output

AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

(Top Thru View)

Absolute Maximum Ratings(Note 1)

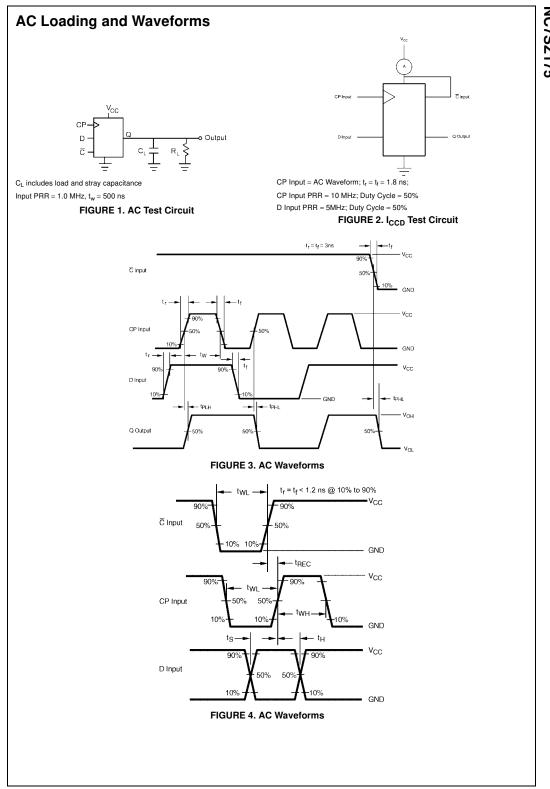
$\Omega_{\rm Linsup}$ (1/)	-0.5V to +7.0V
Supply Voltage (V _{CC})	-0.5V 10 +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{IN} < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
V _{OUT} < 0V	–50 mA
DC Output (I _{OUT}) Source/Sink Current	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P_D) @+85°C	180 mW

Recommended Operating Conditions (Note 2) Power Supply 1.65V to 5.5V Operating (V_{CC}) Data Retention 1.5V to 5.5V 0V to 5.5V Input Voltage (V_{IN}) Output Voltage (V_{OUT}) 0V to $\rm V_{\rm CC}$ Input Rise and Fall Time (t_r, t_f) $V_{CC}=1.8V,\,2.5V\pm0.2V$ 0 to 20 ns/V $V_{CC}=3.3V\pm0.3V$ 0 to 10 ns/V $V_{CC}=5.5V\pm0.5V$ 0 to 5 ns/V Operating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$ Thermal Resistance (θ_{JA}) 350° C/W Note 1: The "Absolute Maximum Ratings": are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

NC7SZ175

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	V _{cc}	1	Γ _A = +25°	С	$T_A = -40^{\circ}$	C to +85°C	Unit	Conditions	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Unit		
V _{IH}	HIGH Level Control	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		v		
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level Control	1.65 to 1.95			0.25 V _{CC}	ſ	0.25 V _{CC}	v		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Control	1.65	1.55	1.65		1.55				
	Output Voltage	1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2				$I_{OH} = -100 \ \mu A$
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4		v	$V_{IN}=V_{IH}$	
		1.65	1.24	1.52		1.29		v	or V _{IL}	$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				I _{OH} = -8 mA
		3.0	2.4	2.8		2.4				I _{OH} = -16 mA
		3.0	2.3	2.68		2.3				I _{OH} = -24 mA
		4.5	3.8	4.2		3.8				I _{OH} = -32 mA
V _{OL}	LOW Level Control	1.65		0.0	0.1		0.1			
	Output Voltage	1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1			$I_{OL} = 100 \ \mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1	v	$V_{IN} = V_{IL} \\$	
		1.65		0.08	0.24		0.24	v	or V _{IH}	$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4			I _{OL} = 16 mA
		3.0		0.22	0.55		0.55			I _{OL} = 24 mA
		4.5		0.22	0.55		0.55			I _{OL} = 32 mA
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μA	$0 \le V_{IN} \le 5$	5.5V
I _{OFF}	Power Off Leakage Current	0.0			1.0	ſ	10	μA	$\rm V_{IN}$ or $\rm V_{OL}$	_{JT} = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1.0		10.0	μA	$V_{IN} = 5.5V$, GND

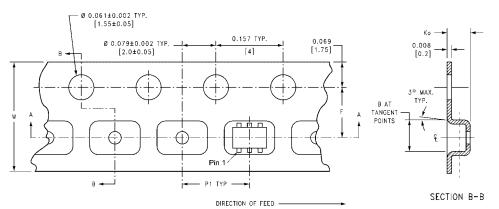
Symbol	Parameter	V_{CC} $T_{A} = +25^{\circ}C$ $T_{A} = -40^{\circ}C$ to $+85^{\circ}$		C to +85°C	Units	Conditions	Fiç			
Symbol		(V)	Min	Тур	Мах	Min	Max	Units	Conditions	Nur
f _{MAX}	Maximum Clock	1.65				100				
	Frequency	1.8				100		1		_
		2.5 ± 0.2				125		MHz	$C_L = 50 \text{ pF}$	Fig 1
		$\textbf{3.3}\pm\textbf{0.3}$				150			$R_L = 500 \ \Omega$	
		5.0 ± 0.5				175				
t _{PLH}	Propagation Delay	1.65	2.5	9.8	15.0	2.5	16.5			
t _{PHL}	CP to Q	1.8	2.5	6.5	10.0	2.5	11.0			
		2.5 ± 0.2	2.0	3.8	6.5	2.0	7.0	1	$C_L = 15 \text{ pF}$	Fig 1
		$\textbf{3.3}\pm\textbf{0.3}$	1.5	2.8	4.5	1.4	5.0	ns	$R_L = 1 M\Omega$	
		5.0 ± 0.5	1.0	2.2	3.5	1.0	3.8			Figures
		$\textbf{3.3}\pm\textbf{0.3}$	2.0	3.4	5.5	1.6	6.2	1	$C_L = 50 \text{ pF}$	
		5.0 ± 0.5	1.5	2.6	4.0	1.4	4.7	1	$R_L = 500 \ \Omega$	
t _{PHL}	Propagation Delay	1.65	2.5	9.8	13.5	2.5	15.0			Figure
	C to Q	1.8	2.5	6.5	9.0	2.5	10.0	1		
		2.5 ± 0.2	2.0	3.8	6.0	2.0	6.4	1	C _L = 15 pF	Fig 1
		$\textbf{3.3}\pm\textbf{0.3}$	1.5	2.8	4.3	1.2	4.6	ns	$R_L = 1 M\Omega$	
		5.0 ± 0.5	1.5	2.2	3.2	1.0	3.5	1		
		$\textbf{3.3}\pm\textbf{0.3}$	1.5	3.4	5.3	1.5	5.8	1	$C_L = 50 \text{ pF}$	Figures 1, 3
		5.0 ± 0.5	1.0	2.7	4.0	1.2	4.5		$R_L = 500 \ \Omega$	
t _S	Setup Time	2.5 ± 0.2				2.5			C _L = 50 pF	
	CP to D	$\textbf{3.3}\pm\textbf{0.3}$				2.0		ns	$R_L = 500 \ \Omega$	Fig 1
		5.0 ± 0.5				1.5				1, 4
t _H	Hold Time,	2.5 ± 0.2				1.5			C _L = 50 pF	_
	CP to D	$\textbf{3.3}\pm\textbf{0.3}$				1.5		ns	$R_L = 500 \ \Omega$	Fig 1
		5.0 ± 0.5				1.5		1		1,4
t _W	Pulse Width, CP	2.5 ± 0.2				3.0			C _L = 50 pF	-
		$\textbf{3.3}\pm\textbf{0.3}$				2.8		ns	$R_L = 500 \ \Omega$	Fig 1
		5.0 ± 0.5				2.5				
	Pulse Width, C	2.5 ± 0.2				3.0			Clock HIGH or LOW	
		3.3 ± 0.3				2.8		ns	$C_{L} = 50 \text{ pF}$	Fig
		5.0 ± 0.5				2.5			$R_{\rm L} = 500 \ \Omega$	1
t _{rec}	Recovery Time,	2.5 ± 0.2				1.0			$C_L = 50 \text{ pF}$	
	C to CP	3.3 ± 0.3				1.0		ns	$R_{l} = 500 \Omega$	Fig 1
		5.0 ± 0.5				1.0		1	-	

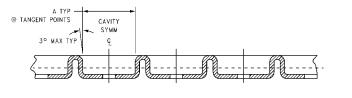
Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Input Capacitance	3		pF	$V_{CC} = Open, V_{IN} = 0V \text{ or } V_{CC}$
C _{OUT}	Output Capacitance	4		pF	$V_{CC} = 3.3V$, $V_{IN} = 0V$ or V_{CC}
C _{PD}	Power Dissipation Capacitance	10		pF	$V_{CC} = 3.3V$
	(Note 4)	12		рі	$V_{CC} = 5.0V$

Note 3: $T_A = +25C$, f = 1MHz.

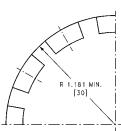
Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static).

NC7SZ175

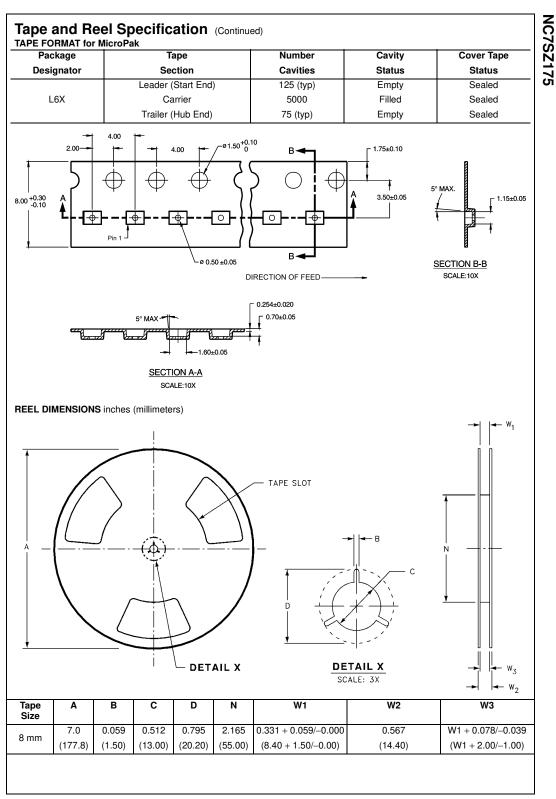

www.fairchildsemi.com



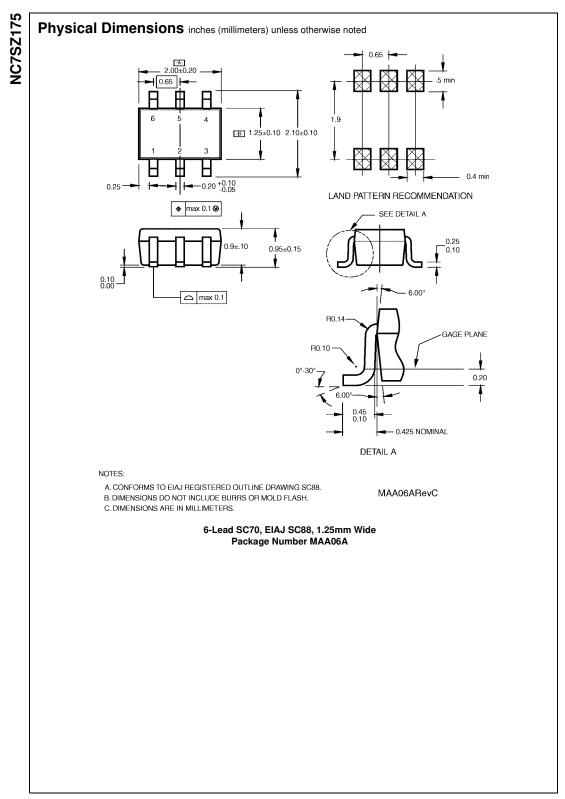
Tape and Reel Specification FORMAT (0070

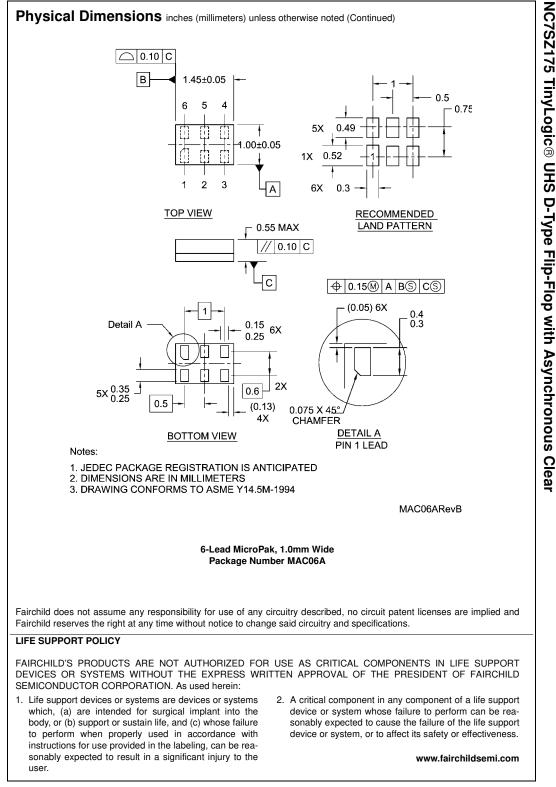

TAPE FORMAT for S	6C70			
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)



SECTION A-A




BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
3070-0	0 11111	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
			•				•

www.fairchildsemi.com

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC