imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

FAIRCHILD

NC7SZ373 TinyLogic® UHS D-Type Latch with 3-STATE Output

General Description

Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- Ultra High Speed; t_{PD} 2.6 ns Typ into 50 pF at 5V V_{CC}

- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Matches the performance of LCX when operated at $3.3V V_{CC}$
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

Ordering Order Number	Code: Package Number	Product Code Top Mark	Package Description	Supplied As
General D The NC7SZ373 CMOS Latch wi High Speed Se SC70 6-lead p advanced CMOS with high output dissipation over device is specifie The inputs and o Inputs tolerate vo ating voltage. Th when Latch Ena data that meets i	73 ic ® UH escription s a single posi h 3-STATE ou ies of TinyLog ackage. The c b technology to drive while ma a very broad v dto operate ove utput are high ir ittages up to 7V he latch appear ole (LE) is HIG he setup time is		ild's Ultra = Ultra small MicroPak™ lead e saving ated with gh speed = High Output Drive; ±24 mA = Broad V _{CC} Operating Rang mge. The 5V range. / _{CC} is 0V. / _{CC} oper- the data LOW, the Brate and the performance of 3.3V V _{CC} = Power down high impedance = Overvoltage tolerant inputs = Patented noise/EMI reducti	package dless package as Typ into 50 pF at 5V V _{CC} at 3V V _{CC} ge; 1.65V to 5.5V of LCX when operated at ce inputs/output facilitate 5V to 3V translation

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

NC7SZ373

Logic Symbol

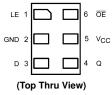
Pin Descriptions

Pin Names	Description
D	Data Input
LE	Latch Enable Input
OE	Output Enable Input
Q	Latch Output

Function Table

		Output		
	LE	D	OE	Q
	Н	L	L	L
	Н	Н	L	Н
	L	Х	L	Q _{n-1}
	Х	Х	н	Z
HIGH	Logic Level	X = Immate	rial	

H = HIGH Logic Level X = Immaterial L = LOW Logic Level Z = HIGH Impedance


 Q_{n-1} = Previous state prior to HIGH-to-LOW transition of latch enable

AAA = Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin.(see diagram).

Pad Assignments for MicroPak

Absolute Maximum Ratings(Note 1)								
Supply Voltage (V _{CC})	-0.5V to +7.0V							
DC Input Voltage (V _{IN})	-0.5V to +7.0V							
DC Output Voltage (V _{OUT})	-0.5V to +7.0V							
DC Input Diode Current (IIK)								
V _{IN} < 0V	–50 mA							
DC Output Diode Current (I _{OK})								
V _{OUT} < 0V	–50 mA							
DC Output (I _{OUT}) Source/Sink Current	±50 mA							
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA							
Storage Temperature Range (T _{STG})	-65°C to +150°C							
Junction Temperature under Bias (T_J)	150°C							
Junction Lead Temperature (TL)								
(Soldering, 10 seconds)	260°C							
Power Dissipation (P _D) @+85°C	180 mW							

Recommended Operating Conditions (Note 2) Power Supply 1.65V to 5.5V Operating (V_{CC}) Data Retention 1.5V to 5.5V 0V to 5.5V Input Voltage (V_{IN}) Output Voltage (V_{OUT}) Active State 0V to V_{CC} 3-STATE 0V to 5.5V Input Rise and Fall Time (t_r, t_f) $V_{CC}=1.8V,\,2.5V\pm0.2V$ 0 to 20 ns/V $V_{CC}=3.3V\pm0.3V$ 0 to 10 ns/V $V_{CC}=5.5V\pm0.5V$ 0 to 5 ns/V Operating Temperature (T_A) -40°C to +85°C

NC7SZ373

350° C/W

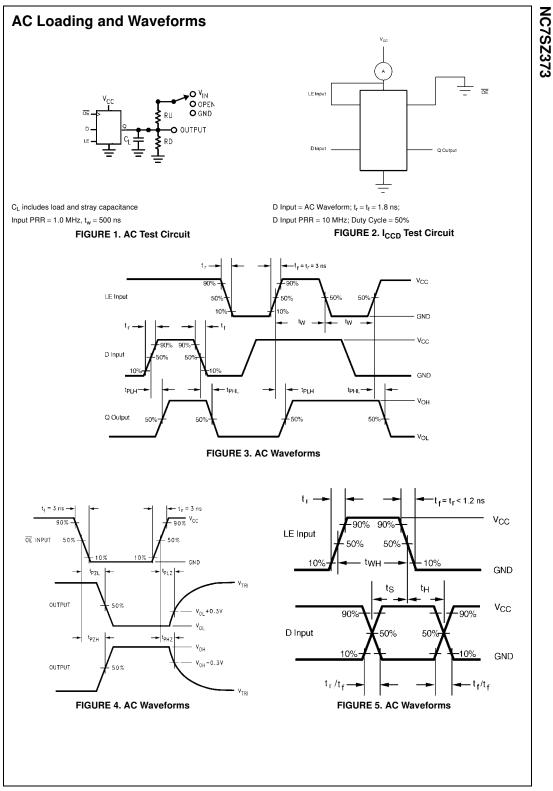
Thermal Resistance (θ_{JA}) Note 1: The "Absolute Maximum Ratings": are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}		$T_A = +25^{\circ}$	C	$T_A = -40^\circ$	C to +85°C	Unit	6	Conditions	
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Unit	0	nutions	
VIH	HIGH Level Control	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		v			
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v			
VIL	LOW Level Control	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	v			
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v			
V _{OH}	HIGH Level Control	1.65	1.55	1.65		1.55					
	Output Voltage	1.8	1.7	1.8		1.7					
		2.3	2.2	2.3		2.2				$I_{OH} = -100 \ \mu A$	
		3.0	2.9	3.0		2.9					
		4.5	4.4	4.5		4.4		v	V V		
		1.65	1.24	1.52		1.29		• V V _{IN} =		$I_{OH} = -4 \text{ mA}$	
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$	
		3.0	2.4	2.8		2.4				$I_{OH} = -16 \text{ mA}$	
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$	
		4.5	3.8	4.2		3.8				$I_{OH} = -32 \text{ mA}$	
V _{OL}	LOW Level Control	1.65		0.0	0.08		0.0				
	Output Voltage	1.8		0.0	0.1		0.1				
		2.3		0.0	0.1		0.1			$I_{OL}=100\;\mu A$	
		3.0		0.0	0.1		0.1				
		4.5		0.0	0.1		0.1	v	V _V		
		1.65		0.08	0.24		0.24	v	$V_{IN} = V_{IL}$	$I_{OL} = 4 \text{ mA}$	
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$	
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$	
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$	
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$	
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μA	$0 \leq V_{IN} \leq$	5.5V	
I _{OZ}	3-STATE	1.65 to 5.5			±0.5		±5.0	μA	$V_{\text{IN}} = V_{\text{IL}}$	or V _{IH}	
	Output Leakage	1.05 10 5.5			±0.5		±0.0	μΛ	$0 \leq V_{OUT}$	≤ 5.5V	
I _{OFF}	Power-Off Leakage Current	0.0			1.0		10	μA	V_{IN} or V_{O}	_{UT} = 5.5V	
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1.0		10	μA	$V_{IN} = 5.5^{\circ}$	/, GND	

		V_{CC} $T_A = +25^{\circ}C$ T_A		$T_{A} = -40^{\circ}$	C to +85°C			Fig		
Symbol	Parameter	(V)	Min	Тур	Max	Min	Мах	Units	Conditions	Num
t _{PLH}	Propagation Delay	1.65	2.0	9.0	15.0	2.0	16.0			
t _{PHL}	D to Q	1.8	2.0	6.1	10.0	2.0	10.5			_
		2.5 ± 0.2	1.5	3.6	6.5	1.6	6.8		C _L = 15 pF	Figures
		3.3 ± 0.3	1.0	2.7	4.6	1.2	5.0	ns	$R_D = 1 M\Omega$.,
		5.0 ± 0.5	1.0	2.0	3.4	1.0	3.7		S ₁ = Open	
		3.3 ± 0.3	1.5	3.3	5.5	1.5	6.2		C _L = 50 pF	Figu
		5.0 ± 0.5	1.0	2.6	4.3	1.3	4.8		$R_D=500\Omega,\ S_1=Open$	Ĩ,
t _{PLH}	Propagation Delay	1.65	2.0	9.0	1.45	2.0	15.0			
t _{PHL}	LE to Q	1.8	2.0	6.0	9.6	2.0	10.0			_
		2.5 ± 0.2	1.8	3.5	6.1	1.5	6.6		C _L = 15 pF	Figu 1,
		$\textbf{3.3}\pm\textbf{0.3}$	1.3	2.6	4.4	1.0	4.8	ns	$R_D = 1 M\Omega$.,
		5.0 ± 0.5	1.0	2.0	3.2	0.8	3.5		S ₁ = Open	
		3.3 ± 0.3	1.5	3.3	5.3	1.5	6.2		$C_L = 50 \text{ pF}$	Figu
		5.0 ± 0.5	1.3	2.6	4.2	1.2	4.6		$R_D = 500\Omega, S_1 = Open$	1,
t _{PZL}	Output Enable Time	1.65	2.0	9.0	13.5	2.0	14.6			
t _{PZH}		1.8	2.0	6.0	9.0	2.0	9.5		$C_L = 50 \text{ pF}, V_I = 2x V_{CC}$	_
		2.5 ± 0.2	2.0	3.7	6.0	1.8	6.6	ns	$R_U, R_D = 500\Omega$	Figu 1,
		$\textbf{3.3}\pm\textbf{0.3}$	1.5	2.8	5.0	1.4	5.3		$S1 = GND$ for t_{PZH}	.,
		5.0 ± 0.5	1.0	2.2	3.7	1.0	3.9		$S1 = V_I$ for t_{PZL}	
t _{PLZ}	Output Disable Time	1.65	2.0	7.7	12.0	2.0	13.0			
t _{PHZ}		1.8	2.0	5.1	8.0	2.0	8.5		$C_L = 50 \text{ pF}, V_I = 2x V_{CC}$	-
		2.5 ± 0.2	2.0	3.5	6.0	1.8	6.3	ns	$R_U, R_D = 500\Omega$	Figu 1,
		3.3 ± 0.3	1.5	2.8	4.5	1.4	4.7		$S_1 = GND$ for t_{PHZ}	.,
		5.0 ± 0.5	1.0	2.3	3.7	1.0	3.9		$S_1 = V_I$ for t_{PLZ}	
t _S	Setup Time,	2.5 ± 0.2				2.0			$C_L = 50 \text{ pF}$	_ .
	D to LE	3.3 ± 0.3				1.5		ns	$R_D = 500 \ \Omega, \ S_1 = Open$	Figu 1,
		5.0 ± 0.5				1.5				.,
t _H	Hold Time,	2.5 ± 0.2				1.5			C _L = 50 pF	_ .
	D to LE	3.3 ± 0.3				1.5		ns	$R_D = 500 \; \Omega, \; S_1 = Open$	Figu 1,
		5.0 ± 0.5				1.5				.,
tw	Pulse Width, LE	2.5 ± 0.2				3.0				-
		3.3 ± 0.3				3.0		ns	$C_L = 50 \text{ pF}$	Figu 1,
		5.0 ± 0.5				3.0			$R_D = 500 \Omega$, $S_1 = Open$.,


Capacitance (Note 3)

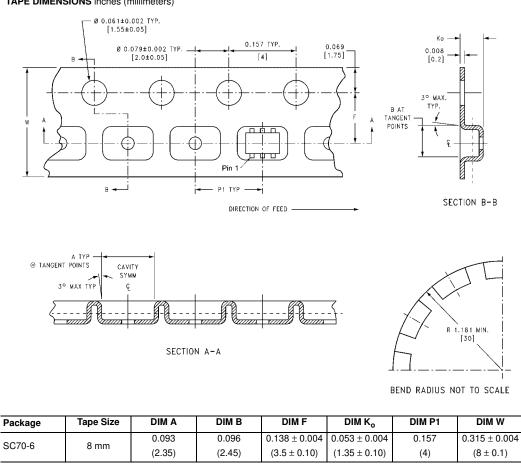
Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Input Capacitance	3		pF	$V_{CC} = Open, V_{IN} = 0V \text{ or } V_{CC}$
C _{OUT}	Output Capacitance	4		pF	V_{CC} = 3.3V, V_{IN} = 0V or V_{CC}
C _{PD}	Power Dissipation Capacitance	14		рF	$V_{CC} = 3.3V$
	(Note 4)	17		рі	$V_{CC} = 5.0V$

Note 3: $T_A = +25C$, f = 1 MHz.

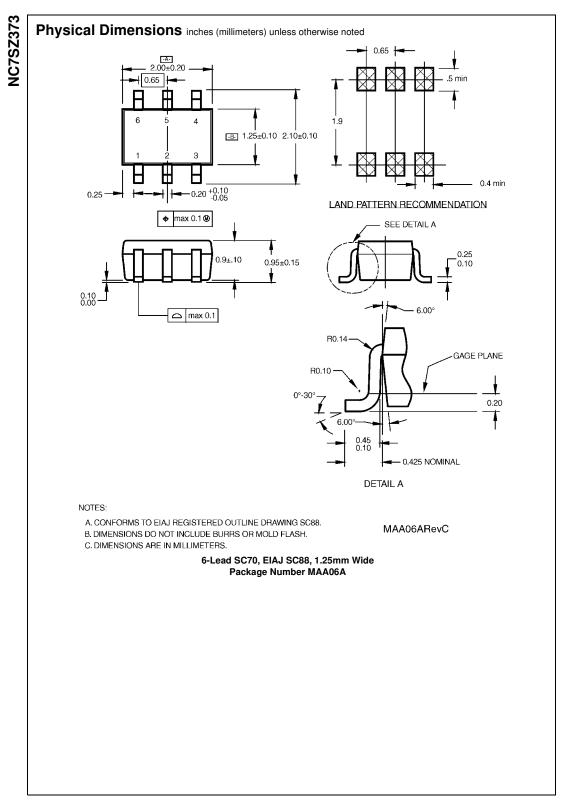
Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% output cycle. (See Figure 2) C_{PD} is related to I_{CCD} dynamic operating current by the expression:

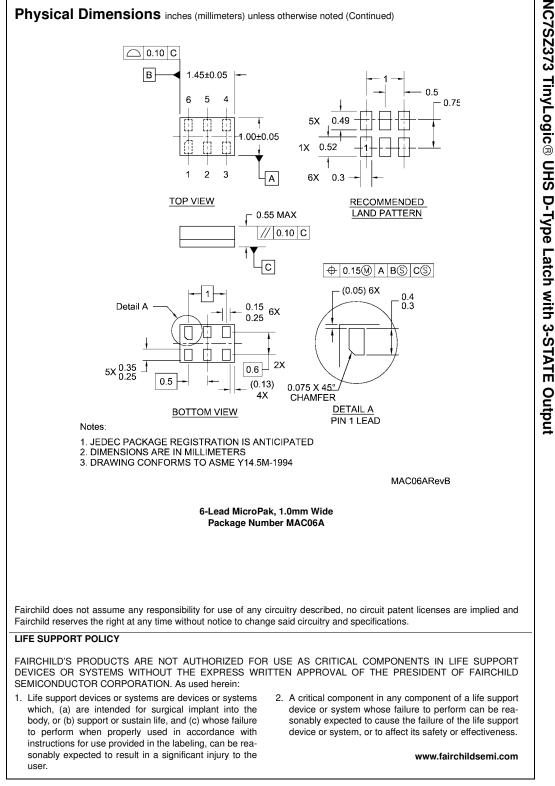
 $\mathsf{I}_{CCD} = (\mathsf{C}_{PD})(\mathsf{V}_{CC})(\mathsf{f}_{\mathsf{IN}}) + (\mathsf{I}_{CC}\mathsf{static}).$

Tape and Reel Specification ____ 0070


TAPE FORMAT for SC70								
Package	Таре	Number						
Decignotor	Continn	Covition						


Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed


Cavity


Cover Tape

TAPE DIMENSIONS inches (millimeters)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC