imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

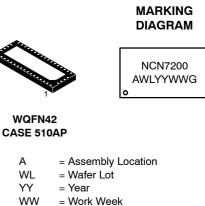
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Gigabit Ethernet LAN Switch with 2:1 Mux/ DeMux and Power-down Feature

The NCN7200 is pin-compatible to the PI3L720ZHE and comes in a 42-pin WQFN package (3.5 mm x 9 mm x 0.5 mm Pitch). The NCN7200 is an 8-channel, bidirectional switch with a power shutdown feature that puts all outputs in a high-impedance state. The switch is compatible with 10/100/1000 Base-T Ethernet standards. The device has 3 additional lines for status indicator LEDs which are switched together with the Ethernet pairs.

Features

- 2:1 Mux/ DeMux LAN Switch
- Three Extra Channels Facilitate LED Switching
- Fully Specified for Power Supply Range: 3 V to 3.6 V
- Powerdown Feature Conserves Energy
- ESD Protection
 - 8 kV HBM (Human Body Model, I/O to GND)
 - ◆ 10 kV Contact Discharge (IEC61000-4-2)
- Low Crosstalk: -70 dB
- Pin-to-Pin Replacement for PI3L720ZHE
- This is a Pb–Free Device


Typical Applications

- Routes signals for 10/100/1000 Mbps Ethernet
- Facilitates Docking System by Interfacing One Controller to Dual Connectors

ON Semiconductor®

http://onsemi.com

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

1

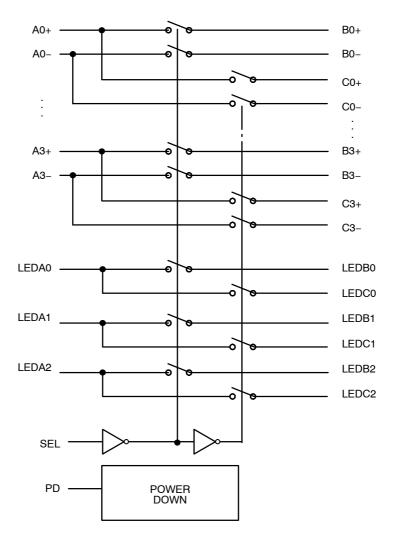
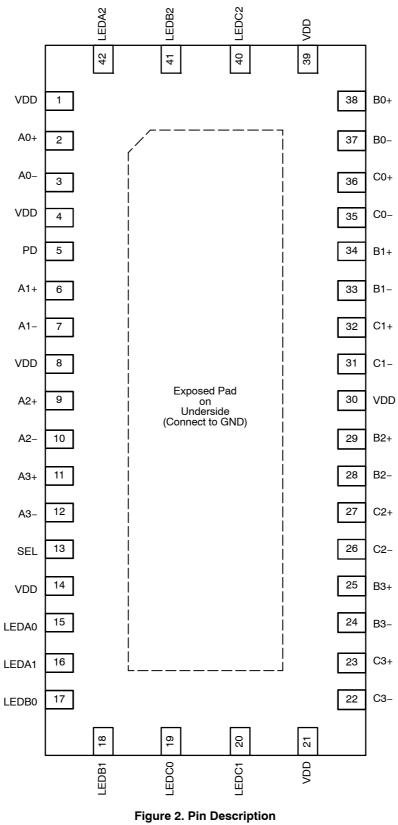



Figure 1. Detailed Block Diagram

PD	SEL	Function
L	L	AX to BX; LEDAX to LEDBX
L	Н	AX to CX; LEDAX to LEDCX
Н	Х	Hi–Z

(Top View)

PIN DESCRIPTION

Pin Name	Description
AX+, AX-	Port A DeMux I/O
BX+, BX-	Port B Mux I/O
CX+, CX-	Port C LED Mux I/O
GND	Ground
LEDZX	LED I/O
PD	Powerdown, Active high, with internal pulldown resistor
SEL	Select
V _{DD}	Power

MAXIMUM RATINGS

Description	Value	Unit
Storage Temperature	-65 to +150	°C
Supply Voltage to Ground Potential	-0.5 to +4.0	V
DC Input Voltage	-0.5 to +5.5	V
DC Output Current (Note 1)	120	mA
Power Dissipation (Note 1)	0.5	W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Continuous short-circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V- will adversely affect reliability.

GIGABIT ETHERNET LAN SWITCH WITH 2:1 MUX/ DEMUX AND POWER DOWN FEATURE

(Min / Max values are at V_{DD} = 3.3 V ±10%, T_A = -40°C to +85°C. Typ values are at V_{DD} = 3.3 V and T_A = 25°C)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
POWER SU	PPLY CHARACTERISTICS (Note 2)					
V _{DD}	Power DC Supply Voltage		3.0	3.3	3.6	V
I _{DD-Standby}	Quiescent Power Supply Current	V_{DD} = 3.6 V, V_{IN} = GND or V_{DD}		0.38	0.45	mA
I _{DD-Active}	Active Power Supply Current	V_{DD} = 3.6 V, V_{IN} = V_{DD} or GND		1.0	1.5	mA
I _{DD-PD}	Power Down Current	P_{D} = 1, V_{DD} = 3.6 V, V_{IN} = V_{DD} or GND		0.13	0.16	mA

2. Active power represents normal data communication. Standby power is when the device is enabled for operation but there is no LAN traffic (cable not connected). Power down current is the minimum power state used when not connected and mobile.

3. Measured by the voltage drop between A and B pins at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A & B) pins.

4. Guaranteed by design and/or characterization.

5. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

GIGABIT ETHERNET LAN SWITCH WITH 2:1 MUX/ DEMUX AND POWER DOWN FEATURE

(Min / Max values are at V_DD = 3.3 V \pm 10%, T_A = -40°C to +85°C. Typ values are at V_{DD} = 3.3 V and T_A = 25°C)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
CONTROL	LOGIC (SEL AND PD PINS) DC ELE	CTRICAL CHARACTERISTICS FOR 1000 BA	SE-T ETH	ERNET S	WITCHING	à
VIH	Input HIGH Voltage	Guaranteed HIGH level	2.0			V
V _{IL}	Input LOW Voltage	Guaranteed LOW level	-0.5		0.8	
VIK	Clamp Diode Voltage	$V_{DD} = Max$, $I_{IN} = -18 \text{ mA}$		-0.7	-1.0	
I _{IHSEL}	Input HIGH Current (SEL)	$V_{DD} = Max, V_{IN} = V_{DD}$			±0.1	μA
I _{IHPD}	Input High Current (PD)	$V_{DD} = Max, V_{IN} = V_{DD}$			±1.2	
۱ _{IL}	Input LOW Current	V _{DD} = Max, V _{IN} = GND			±0.1	
I _{OFF}	Off-Leakage Current (SEL)	V_{DD} = 0 V, V_{IN} = 0 V to V_{DD}			±0.1	
DATA PATH	I (AX TO BX, CX PINS) DC ELECTR	ICAL CHARACTERISTICS FOR 1000 BASE-	T ETHERN		HING	

R _{ON}	Switch On-Resistance (Note 3)	V_{DD} = Min, 1.5 V < V_{IN} < V_{DD},I_{TN} = -40 mA		2.0	6.0	Ω
R _{FLAT(ON)}	On-Resistance Flatness (Note 3)	V_{DD} = Min, V_{IN} @ 1.5 V and V_{DD} , I_{TN} = -40 mA		0.3		
ΔR_{ON}	On–Resistance match from center ports to any other port (Note 3)	V_{DD} = Min, 1.5 V < V_{IN} < V_{DD} , I_{TN} = -40 mA		0.5	1.0	
I _{ON}	On Leakage Current (AX)	V_{DD} = 3.6 V, V_{AX} = 0 V or V_{DD},V_{OUT} = Float	-0.1		+0.1	μA
I _{OFF}	Off Leakage Current (AX/BX/CX)	V_{DD} = 3.6 V, V_{IN} = 0 V or V_{DD}, V_{OUT} = V_{DD} or 0 V	-0.1		+0.1	μA

DATA PATH (LEDAX TO LEDBX, LEDCX PINS) DC ELECTRICAL CHARACTERISTICS FOR 1000 BASE-T ETHERNET SWITCHING

R _{ON}	Switch On-Resistance (Note 3)	V_{DD} = Min, 1.5 V < V_{IN} < V_{DD} , I_{TN} = -40 mA		7.0	16	Ω
R _{FLAT(ON)}	On-Resistance Flatness (Note 3)	V_{DD} = Min, V_{IN} @ 1.5 V and V_{DD} , I_{TN} = -40 mA		0.3		
∆R _{ON}	On–Resistance match from center ports to any other port (Note 3)	V_{DD} = Min, 1.5 V < V_{IN} < V_{DD} , I_{TN} = -40 mA		0.8	1.25	
I _{ON}	On Leakage Current (LEDAX)	V_{DD} = 3.6 V, V_{AX} = 0 V or V_{DD} , V_{OUT} = Float	-0.1		+0.1	μA
I _{OFF}	Off Leakage Current (LEDAX/LEDBX/LEDCX)	V_{DD} = 3.6 V, V_{IN} = 0 V or V_{DD},V_{OUT} = V_{DD} or 0 V	-0.1		+0.1	μΑ

CONTROL LOGIC (SEL AND PD PINS) DC ELECTRICAL CHARACTERISTICS FOR 10/100 BASE-T ETHERNET SWITCHING

V _{IH}	Input HIGH Voltage	Guaranteed HIGH level (Control Pins)	2.0			V
V _{IL}	Input LOW Voltage	Guaranteed LOW level (Control Pins)	-0.5		0.8	
V _{IK}	Clamp Diode Voltage	V _{DD} = Max, IN = -18 mA		-0.7	-1.0	
I _{IHSEL}	Input HIGH Current (SEL)	V _{DD} = Max, V _{IN} = V _{DD}			±0.1	μΑ
I _{IHPD}	Input HIGH Current (PD)	V _{DD} = Max, V _{IN} = V _{DD}			±1.2	
IIL	Input LOW Current	V _{DD} = Max, V _{IN} = GND			±0.1	
I _{OFF}	Off-Leakage Current (SEL)	V_{DD} = 0 V, V_{IN} = 0 V to V_{DD}			±0.1	

2. Active power represents normal data communication. Standby power is when the device is enabled for operation but there is no LAN traffic (cable not connected). Power down current is the minimum power state used when not connected and mobile.

3. Measured by the voltage drop between A and B pins at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A & B) pins.

4. Guaranteed by design and/or characterization.

5. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

GIGABIT ETHERNET LAN SWITCH WITH 2:1 MUX/ DEMUX AND POWER DOWN FEATURE

(Min / Max values are at V_{DD} = 3.3 V ±10%, T_A = -40°C to +85°C. Typ values are at V_{DD} = 3.3 V and T_A = 25°C)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit		
DATA PATH	DATA PATH (AX TO BX, CX PINS) DC ELECTRICAL CHARACTERISTICS FOR 10/100 BASE-T ETHERNET SWITCHING							
R _{ON}	Switch On-Resistance (Note 3)	V_{DD} = Min, 1.25 V < V_{IN} < V_{DD},I_{TN} = –10 mA to –30 mA		2.0	6.0	Ω		
R _{FLAT(ON)}	On-Resistance Flatness (Note 3)	V_{DD} = Min, 1.25 V < V_{IN} < V_{DD},I_{TN} = –10 mA to –30 mA		0.8				
ΔR_{ON}	On–Resistance match from center ports to any other port (Note 3)	V_{DD} = Min, 1.25 V < V_{IN} < V_{DD},I_{TN} = –10 mA to –30 mA		0.8	1.3			
I _{ON}	On Leakage Current (AX)	V_{DD} = 3.6 V, V_{AX} = 0 V or V_{DD},V_{OUT} = Float	-0.1		+0.1	μA		
I _{OFF}	Off Leakage Current (AX/BX/CX)	V_{DD} = 3.6 V, V_{IN} = 0 V or V_{DD}, V_{OUT} = V_{DD} or 0 V	-0.1		+0.1	μΑ		

DATA PATH (LEDAX TO LEDBX, LEDCX PINS) DC ELECTRICAL CHARACTERISTICS FOR 10/100 BASE-T ETHERNET SWITCHING

R _{ON}	Switch On-Resistance (Note 3)	V_{DD} = Min, 1.25 V < V_{IN} < V_{DD},I_{TN} = –10 mA to –30 mA		7.0	16	Ω
R _{FLAT(ON)}	On-Resistance Flatness (Note 3)	V_{DD} = Min, 1.25 V < V_{IN} < V_{DD},I_{TN} = –10 mA to –30 mA		0.3		
∆R _{ON}	On–Resistance match from center ports to any other port (Note 3)	V_{DD} = Min, 1.25 V < V_{IN} < V_{DD},I_{TN} = –10 mA to –30 mA		0.8	1.25	
I _{ON}	On Leakage Current (LEDAX)	V_{DD} = 3.6 V, V_{AX} = 0 V or V_{DD},V_{OUT} = Float	-0.1		+0.1	μΑ
I _{OFF}	Off Leakage Current (LEDAX/LEDBX/LEDCX)	V_{DD} = 3.6 V, V_{IN} = 0 V or V_{DD},V_{OUT} = V_{DD} or 0 V	-0.1		+0.1	μΑ

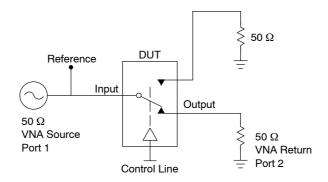
CAPACITANCE (AX TO BX, CX AND LEDAX TO LEDBX, LEDCX PINS) (Note 4)

C _{IN}	Input Capacitance	V _{IN} = 0 V, f = 1 MHz	3.0	4.0	pF
C _{OFF(B1,} B2)	Port B Capacitance, Switch OFF		5.0	7.0	
C _{ON(A/B)}	A/B Capacitance, Switch ON		10.5	12	

DYNAMIC ELECTRICAL CHARACTERISTICS (AX TO BX AND LEDAX TO LEDBX PINS) (Note 5)

BW	Bandwidth -3 dB	$R_L = 100 \ \Omega$ (Figure 3)	750	MHz
O _{IRR}	OFF Isolation	R_L = 100 Ω , f = 250 MHz (Figure 7)	-30	dB
XTALK	Crosstalk	$R_L = 100 \Omega$, f = 250 MHz (Figure 8)	-70	

SWITCHING CHARACTERISTICS (AX TO BX AND LEDAX TO LEDBX PINS) (Notes 4 and 5)


t _{PD}	Propagation Delay (Figure 4)		0.3		ns
$t_{\text{PZH}}, t_{\text{PZL}}$	Line Enable Time – SEL to AN, BN (Figure 4)	0.5		15	
t _{PHZ} , t _{PLZ}	Line Disable Time – SEL to AN, BN (Figure 4)	0.5		25	
t _{SK(o)}	Output Skew between center port to any other port		0.1	0.2	
t _{SK(p)}	Skew between opposite transitions of the same output $(t_{Hil},-t_{PLH})$		0.1	0.2	

2. Active power represents normal data communication. Standby power is when the device is enabled for operation but there is no LAN traffic (cable not connected). Power down current is the minimum power state used when not connected and mobile.

3. Measured by the voltage drop between A and B pins at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A & B) pins.

4. Guaranteed by design and/or characterization.

5. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

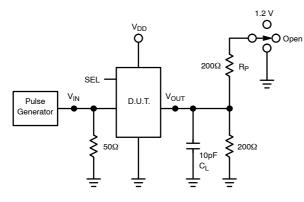


Figure 4. Three–State and t_{pd} Test Setup

SWITCH POSITIONS

Test	Switch
t _{PLZ} , t _{PZL} (Output on B-Side)	1.2 V
t _{PHZ} , t _{PZH} (Output on B-Side)	GND
t _{PD}	OPEN

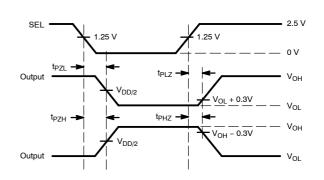


Figure 5. Three-State Timing Diagram

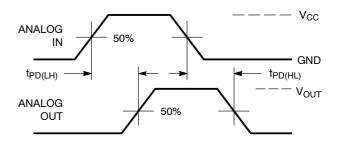


Figure 6. Propagation Delay

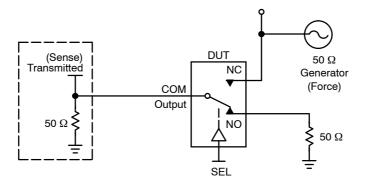
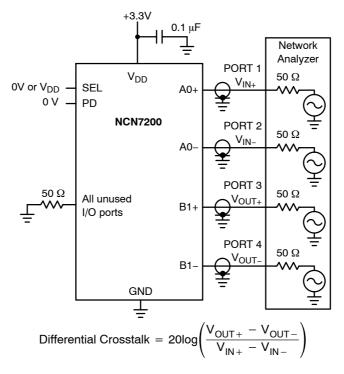



Figure 7. Off-Isolation

Measurements are standardized against shorts at IC terminals. Differential Crosstalk is measured between any two non-adjacent pairs.

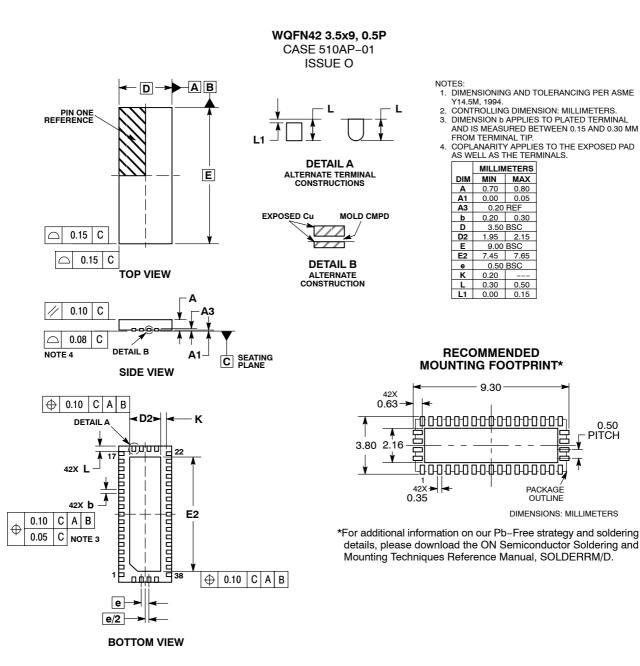
Figure 8. Differential Crosstalk

APPLICATION INFORMATION

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, the output enables or select pins may be driven low to 0 V and high to 3.6 V: driving the control pins to the rails minimizes power consumption.

Power-Supply Sequencing


Proper power–supply sequencing is advised for all CMOS devices. It is recommended to always apply V_{DD} before applying signals to the input/output or control pins.

ORDERING INFORMATION

Device	Package	Shipping [†]
NCN7200MTTWG	WQFN42 (Pb-Free)	2000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All or operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

0.50