: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NCP1070, NCP1071, NCP1072, NCP1075, NCP1076, NCP1077

High-Voltage Switcher for Low Power Offline SMPS

The NCP107x products integrate a fixed frequency current mode controller with a 700 V MOSFET. Available in a PDIP-7 or SOT-223 package, the NCP107x offer a high level of integration, including soft-start, frequency-jittering, short-circuit protection, skip-cycle, a maximum peak current set point, ramp compensation, and a Dynamic Self-Supply (eliminating the need for an auxiliary winding).

Unlike other monolithic solutions, the NCP107x is quiet by nature: during nominal load operation, the part switches at one of the available frequencies $(65,100$ or 130 kHz$)$. When the output power demand diminishes, the IC automatically enters frequency foldback mode and provides excellent efficiency at light loads. When the power demand reduces further, it enters into a skip mode to reduce the standby consumption down to a no load condition.

Protection features include: a timer to detect an overload or a short-circuit event, Overvoltage Protection with auto-recovery and AC input line voltage detection.

For improved standby performance, the connection of an auxiliary winding stops the DSS operation and helps to reduce input power consumption below 50 mW at high line.

Features

- Built-in 700 V MOSFET with $\mathrm{R}_{\mathrm{DS}(o n)}$ of 4.7Ω (NCP1076/77) / $11 \Omega(\mathrm{NCP} 1072 / 75) / 22 \Omega(\mathrm{NCP} 1070 / 71)$
- Large Creepage Distance Between High-voltage Pins
- Current-Mode Fixed Frequency Operation - $65 / 100 / 130$ kHz
- Peak Current: NCP1070/72 with 250 mA , NCP1071 with 350 mA , NCP1075 with 450 mA , NCP1076 with 650 mA and NCP1077 with 800 mA
- Fixed Ramp Compensation
- Skip-Cycle Operation at Low Peak Currents Only: No Acoustic Noise!
- Dynamic Self-Supply: No Need for an Auxiliary Winding
- Internal 1 ms Soft-Start
- Auto-Recovery Output Short Circuit Protection with Timer-Based Detection
- Auto-Recovery Overvoltage Protection with Auxiliary Winding Operation
- Frequency Jittering for Better EMI Signature, Including Frequency Foldback Mode
- No Load Input Consumption < 50 mW

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information on page 28 of this data sheet.

PIN CONNECTIONS

Figure 1. Pin Connections

INDICATIVE MAXIMUM OUTPUT POWER

	$R_{\text {DS(on) }}-I_{\text {IPK }}$	230 Vac	$85-265 \mathrm{Vac}$
NCP1070 / 1071	$22 \Omega-350 \mathrm{~mA}$	14 W	7.75 W
NCP1072 / 1075	$11 \Omega-450 \mathrm{~mA}$	19 W	10 W
NCP1076 / 1077	$4.7 \Omega-800 \mathrm{~mA}$	25 W	15 W

NOTE: Informative values only, with $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{SW}}=65 \mathrm{kHz}$, Self supply via Auxiliary winding and circuit mounted on minimum copper area as recommended.

QUICK SELECTION TABLE

	NCP1070			NCP1071			NCP1072			NCP1075			NCP1076			NCP1077		
$\mathrm{R}_{\mathrm{DS} \text { (on) }}(\Omega)$	22						11						4.7					
Ipeak (mA)	250			350			250			450			650			800		
Freq (kHz)	65	100	130	65	100	130	65	100	130*	65	100	130	65	100	130	65	100	130

*130 kHz on demand only

Figure 2. Typical Application Example

PIN FUNCTION DESCRIPTION

Pin \mathbf{N}°	Pin Name	Function	Pin Description
1	V $_{\text {CC }}$	Powers the internal circuitry	This pin is connected to an external capacitor. The $V_{\text {CC }}$ includes an active shunt which serves as an auto-recovery over voltage protection.
2	NC		
3	GND	The IC Ground	
4	FB	Feedback signal input	By connecting an opto-coupler to this pin, the peak current set point is adjusted accordingly to the output power demand.
5	Drain	Drain connection	The internal drain MOSFET connection
6			This un-connected pin ensures adequate creepage distance
7	GND	The IC Ground	
8	GND	The IC Ground	

Figure 3. Simplified Internal Circuit Architecture

MAXIMUM RATINGS TABLE

Symbol	Rating		Value	Unit
$V_{\text {cc }}$	Power Supply Voltage on all pins, except Pin 5(Drain)		-0.3 to 10	V
BVdss	Drain voltage		-0.3 to 700	V
$\mathrm{I}_{\text {DS(PK) }}$	Drain current peak during transformer saturation $\left(T_{J}=150^{\circ} \mathrm{C}\right.$, Note 3): NCP1070/71: NCP1072/75: NCP1076/77: Drain current peak during transformer saturation $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$, Note 3$)$: NCP1070/71: NCP1072/75: NCP1076/77:		$\begin{gathered} 480 \\ 870 \\ 2200 \\ \\ 850 \\ 1500 \\ 3900 \end{gathered}$	mA mA mA mA mA mA
I_V ${ }_{\text {CC }}$	Maximum Current into Pin 1 when Activating the 8.2 V Active Clamp		15	mA
$\mathrm{R}_{\text {өJ-A }}$	P Suffix, Case 626A Junction-to-Air, 2.0 oz Printed Circuit Copper Clad	0.36 Sq. Inch	77	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		1.0 Sq. Inch	60	
$\mathrm{R}_{\text {өJ-A }}$	ST Suffix, Plastic Package Case 318E Junction-to-Air, 2.0 oz Printed Circuit Copper Clad	0.36 Sq. Inch	74	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		1.0 Sq. Inch	55	
TJ MAX	Maximum Junction Temperature		150	${ }^{\circ} \mathrm{C}$
	Storage Temperature Range		-60 to +150	${ }^{\circ} \mathrm{C}$
	ESD Capability, Human Body Model (All pins except HV)		2	kV
	ESD Capability, Machine Model		200	V
	ESD Capability, Charged Device Model		1	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device series contains ESD protection and exceeds the following tests:

Human Body Model 2000 V per JEDEC JESD22-A114-F
Machine Model Method 200 V per JEDEC JESD22-A115-A
Charged Device Model 1000 V per JEDEC JESD22-C101E
2. This device contains latch-up protection and exceeds 100 mA per JEDEC Standard JESD78
3. Maximum drain current $\mathrm{I}_{\mathrm{DS}(\mathrm{PK})}$ is obtained when the transformer saturates. It should not be mixed with short pulses that can be seen at turn on. Figure 4 below provides spike limits the device can tolerate.

Figure 4. Spike Limits

ELECTRICAL CHARACTERISTICS

(For all NCP107X products except NCP1072P100BG: For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ unless otherwise noted)
(For NCP1072P100BG: For typical values $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ (Note 7) to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ unless otherwise noted)

Symbol	Rating	Pin	Min	Typ	Max	Unit

SUPPLY SECTION AND VCc MANAGEMENT

$\mathrm{V}_{\mathrm{CC} \text { (on) }}$	V_{CC} increasing level at which the switcher starts operation NCP1070/71/72/75 NCP1076/77	1 1	$\begin{aligned} & 7.8 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.5 \end{aligned}$	V
$\mathrm{V}_{\mathrm{CC}(\text { min })}$	$\mathrm{V}_{\text {CC }}$ decreasing level at which the HV current source restarts	1	6.5	6.8	7.2	V
$\mathrm{V}_{\mathrm{CC} \text { (off) }}$	V_{CC} decreasing level at which the switcher stops operation (UVLO)	1	6.1	6.3	6.6	V
$\mathrm{V}_{\text {CC(reset) }}$	$\mathrm{V}_{\text {CC }}$ voltage at which the internal latch is reset (guaranteed by design)	1		4		V
$\mathrm{V}_{\mathrm{CC} \text { (clamp) }}$	Offset voltage above $\mathrm{V}_{\mathrm{CC} \text { (on) }}$ at which the internal clamp activates NCP1070/71 NCP1072/75 NCP1076/77	1 1 1	$\begin{aligned} & 110 \\ & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 170 \\ & 190 \\ & 190 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	mV
$\mathrm{I}_{\mathrm{CC} 1}$	Internal IC consumption, Mosfet switching NCP1070/71/72/75 NCP1076/77	1 1	-	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	mA
ICCskip	Internal IC consumption, FB is 0 V (No switching on MOSFET)	1		360		$\mu \mathrm{A}$

POWER SWITCH CIRCUIT

$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Power Switch Circuit on-state resistance (Id = 50 mA) NCP1070/71 $\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$ NCP1072/75 $\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$ NCP1076/77 $\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$	5		$\begin{aligned} & 22 \\ & 38 \\ & 11 \\ & 19 \\ & 4.7 \\ & 8.7 \end{aligned}$	$\begin{gathered} 32 \\ 55 \\ \\ 16 \\ 24 \\ \\ 6.9 \\ 10.75 \end{gathered}$	Ω
BV ${ }_{\text {DSS }}$	Power Switch Circuit \& Startup breakdown voltage $\left(\mathrm{ID}_{\text {(off) }}=120 \mu \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right)$	5	700			V
$\mathrm{I}_{\text {DSS(off) }}$	Power Switch \& Startup breakdown voltage off-state leakage current $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}(\mathrm{Vds}=700 \mathrm{~V})$	5		85		$\mu \mathrm{A}$
$\begin{aligned} & t_{\text {on }} \\ & t_{\text {off }} \end{aligned}$	Switching characteristics ($\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{DS}}$ set for $\left.\mathrm{I}_{\text {drain }}=0.7 \times \mathrm{llim}\right)$ Turn-on time (90% - 10\%) Turn-off time (10% - 90%)	5		20 10		ns

INTERNAL START-UP CURRENT SOURCE

$\mathrm{I}_{\text {start1 }}$	High-voltage current source, $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}(\text { on) }}-200 \mathrm{mV}$ NCP1070/71/76/77 NCP1072/75	5 5	5.2 5	9.2 9	12.2 12	mA
$\mathrm{I}_{\text {start2 }}$	High-voltage current source, $\mathrm{V}_{\text {CC }}=0 \mathrm{~V}$	5		0.5		mA
$\mathrm{~V}_{\text {CCTH }}$	VCC Transient level for Istart1 to Istart2 toggling point	1	-	2.2	-	V

CURRENT COMPARATOR

| IIPK | Maximum internal current setpoint at 50\% duty cycle | | | | mA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | FB pin open, Tj $=25^{\circ} \mathrm{C}$ | | | | |
| | NCP1070 | | - | 250 | - |
| | NCP1071 | - | 350 | - | |
| | NCP1072 | - | 250 | - | |
| | NCP1075 | - | 450 | - | |
| | NCP1076 | - | 650 | - | |
| | NCP1077 | - | 800 | - | |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. The final switch current is: $\mathrm{I}_{\operatorname{IPK}(0)} /\left(\mathrm{V}_{\text {in }} / L_{p}+\mathrm{S}_{\mathrm{a}}\right) \times \mathrm{V}_{\text {in }} / L_{p}+\mathrm{V}_{\text {in }} / L_{p} \times \mathrm{t}_{\text {prop }}$, with S_{a} the built-in slope compensation, Vin the input voltage, L_{p} the primary inductor in a flyback, and $\mathrm{t}_{\text {prop }}$ the propagation delay.
5. NCP1072 130 kHz on demand only.
6. Oscillator frequency is measured with disabled jittering.
7. For coldest temperature, QA sampling at $-40^{\circ} \mathrm{C}$ in production and $-55^{\circ} \mathrm{C}$ specification is Guaranteed by Characterization.

ELECTRICAL CHARACTERISTICS
(For all NCP107X products except NCP1072P100BG: For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for min $/$ max values $\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ unless otherwise noted)
(For NCP1072P100BG: For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{J}=-55^{\circ} \mathrm{C}$ (Note 7) to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ unless otherwise noted)

Symbol	Rating	Pin	Min	Typ	Max	Unit

CURRENT COMPARATOR

$1 \mathrm{IPK}(0)$	Maximum internal current setpoint at beginning of switching cycle FB pin open, $\mathrm{Tj}=25^{\circ} \mathrm{C}$ NCP1070 NCP1071 NCP1072 NCP1075 NCP1076 NCP1077		$\begin{aligned} & 273 \\ & 382 \\ & 254 \\ & 467 \\ & 689 \\ & 846 \end{aligned}$	$\begin{aligned} & 304 \\ & 425 \\ & 282 \\ & 508 \\ & 765 \\ & 940 \end{aligned}$	$\begin{gathered} 334 \\ 467 \\ 310 \\ 549 \\ 841 \\ 1034 \end{gathered}$	mA
IIPKSW	Final switch current with a primary slope of $200 \mathrm{~mA} / \mu \mathrm{s}$, Fsw $=65 \mathrm{kHz}$ (Note 4) NCP1070 NCP1071 NCP1072 NCP1075 NCP1076 NCP1077			$\begin{aligned} & 314 \\ & 427 \\ & 296 \\ & 510 \\ & 732 \\ & 881 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	mA
IIPKSW	Final switch current with a primary slope of $200 \mathrm{~mA} / \mu \mathrm{s}$, $\mathrm{F}_{\mathrm{SW}}=100 \mathrm{kHz}$ (Note 4) NCP1070 NCP1071 NCP1072 NCP1075 NCP1076 NCP1077			$\begin{aligned} & 309 \\ & 415 \\ & 293 \\ & 500 \\ & 706 \\ & 845 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	mA
IIPKSW	Final switch current with a primary slope of $200 \mathrm{~mA} / \mu \mathrm{s}$, $\mathrm{F}_{\mathrm{SW}}=130 \mathrm{kHz}$ NCP1070 NCP1071 NCP1072 (Note 5) NCP1075 NCP1076 NCP1077		-	$\begin{aligned} & 303 \\ & 407 \\ & 291 \\ & 493 \\ & 684 \\ & 814 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	mA
TSS	Soft-start duration (guaranteed by design)	-	-	1	-	ms
$\mathrm{T}_{\text {LEB }}$	Leading Edge Blanking Duration	-	-	200	-	ns
Tprop	Propagation delay from current detection to drain OFF state	-	-	100	-	ns

INTERNAL OSCILLATOR

$\mathrm{f}_{\mathrm{OSC}}$	Oscillation frequency, 65 kHz version, $\mathrm{Tj}=25^{\circ} \mathrm{C}($ Note 6$)$	-	59	65	71
$\mathrm{f}_{\mathrm{OSC}}$	Oscillation frequency, 100 kHz version, $\mathrm{Tj}=25^{\circ} \mathrm{C}($ Note 6$)$	kHz			
$\mathrm{f}_{\mathrm{OSC}}$	Oscillation frequency, 130 kHz version, $\mathrm{Tj}=25^{\circ} \mathrm{C}($ Note 5 et 6$)$	-	90	100	110
$\mathrm{f}_{\mathrm{jitter}}$	Frequency jittering in percentage of f OSC	-	117	130	143
$\mathrm{f}_{\text {swing }}$	Jittering swing frequency	-	-	± 6	-
$\mathrm{D}_{\max }$	Maximum duty-cycle	-	-	-	300
	NCP1070/71/72/75 except NCP1072P100BG	-	Hz		
	NCP1076/77/72B \& NCP1072P100BG	-	62	68	72

FEEDBACK SECTION

$\mathrm{I}_{\text {FBfault }}$	FB current for which Fault is detected	4		-35		$\mu \mathrm{~A}$
$\mathrm{I}_{\text {FB100\% }}$	FB current for which internal current set-point is $100 \%\left(\mathrm{I}_{\mathrm{IPK}(0)}\right)$	4		-44		$\mu \mathrm{~A}$
$\mathrm{I}_{\text {FBFreeze }}$	FB current for which internal current set-point is $\mathrm{I}_{\text {Freeze }}$	4	-	-90	-	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. The final switch current is: $I_{\operatorname{IPK}(0)} /\left(V_{\text {in }} / L_{p}+S_{a}\right) \times V_{\text {in }} / L_{p}+V_{\text {in }} / L_{p} \times t_{\text {prop }}$, with S_{a} the built-in slope compensation, Vin the input voltage, L_{p} the primary inductor in a flyback, and $\mathrm{t}_{\text {prop }}$ the propagation delay.
5. NCP1072 130 kHz on demand only.
6. Oscillator frequency is measured with disabled jittering.
7. For coldest temperature, QA sampling at $-40^{\circ} \mathrm{C}$ in production and $-55^{\circ} \mathrm{C}$ specification is Guaranteed by Characterization.

ELECTRICAL CHARACTERISTICS

(For all NCP107X products except NCP1072P100BG: For typical values $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{J}}=40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ unless otherwise noted)
(For NCP1072P100BG: For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ (Note 7) to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ unless otherwise noted)

| Symbol | Rating | Pin | Min | Typ | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| FEEDBACK SECTION | | | | | | |
| $\mathrm{V}_{\text {FB(REF) }}$ | Equivalent pull-up voltage in linear regulation range
 (Guaranteed by design) | 4 | | 3.3 | | V |
| $\mathrm{R}_{\mathrm{FB} \text { (up) }}$ | Equivalent feedback resistor in linear regulation range
 (Guaranteed by design) | 4 | | 19.5 | | $\mathrm{k} \Omega$ |

FREQUENCY FOLDBACK \& SKIP

$\mathrm{I}_{\text {FBfold }}$	Start of frequency foldback feedback level	4	-	-68	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {FBfold(end) }}$	End of frequency foldback feedback level, $\mathrm{F}_{\text {sw }}=\mathrm{F}_{\text {min }}$	4	-	-100	-	$\mu \mathrm{A}$
$\mathrm{F}_{\text {min }}$	The frequency below which skip-cycle occurs	-	21	25	29	kHz
$\mathrm{I}_{\text {FBskip }}$	The feedback level to enter skip mode	4	-	-120	-	$\mu \mathrm{A}$
${ }^{\text {Freeze }}$	```Internal minimum current setpoint (\(\left.\mathrm{I}_{\mathrm{FB}}=\mathrm{I}_{\text {FBFreeze }}\right)\) NCP1070 NCP1071 NCP1072 NCP1075 NCP1076 NCP1077```	-	-	$\begin{gathered} 88 \\ 123 \\ 88 \\ 168 \\ 228 \\ 280 \end{gathered}$	- - - - - -	mA

RAMP COMPENSATION

$\mathrm{S}_{\mathrm{a}(65)}$	```The internal ramp compensation @ 65 kHz NCP1070 NCP1071 NCP1072 NCP1075 NCP1076 NCP1077```	-	- - - - -	$\begin{gathered} 7 \\ 10 \\ 4.2 \\ 7.5 \\ 15 \\ 18 \end{gathered}$	- - - - - -	$\mathrm{mA} / \mathrm{\mu s}$
$\mathrm{S}_{\mathrm{a}(100)}$		-	- - - - - -	$\begin{gathered} 11 \\ 15 \\ 6.5 \\ 11.5 \\ 23 \\ 28 \end{gathered}$	- - - - - -	$\mathrm{mA} / \mathrm{\mu s}$
$\mathrm{S}_{\mathrm{a}(130)}$	```The internal ramp compensation @ 130 kHz NCP1070 NCP1071 NCP1072 (Note 5) NCP1075 NCP1076 NCP1077```	-	- - - - -	$\begin{aligned} & 14 \\ & 20 \\ & 8.4 \\ & 15 \\ & 30 \\ & 36 \end{aligned}$	-	

PROTECTIONS

${ }_{\text {t }}^{\text {SCP }}$	Fault validation further to error flag assertion	-	40	53	-	ms
$\mathrm{t}_{\text {recovery }}$	OFF phase in fault mode NCP1070/1/2/5/6/7 NCP1072P100BG	-	-	$\begin{aligned} & 420 \\ & 210 \end{aligned}$	-	ms
lovp	$\begin{aligned} & \text { VCC clamp current at which the switcher stops pulsing } \\ & \text { NCP1070/71 } \\ & \text { NCP1072/75/76/77 } \end{aligned}$	1	$\begin{gathered} 6.2 \\ 6 \end{gathered}$	$\begin{aligned} & 8.7 \\ & 8.5 \end{aligned}$	$\begin{gathered} 11.2 \\ 11 \end{gathered}$	mA
tovp	The filter of $\mathrm{V}_{\text {CC }}$ OVP comparator	-	-	80	-	$\mu \mathrm{s}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. The final switch current is: $I_{I P K(0)} /\left(V_{i n} / L_{p}+S_{a}\right) \times V_{\text {in }} / L_{p}+V_{i n} / L_{p} \times t_{\text {prop }}$, with S_{a} the built-in slope compensation, Vin the input voltage, L_{p} the primary inductor in a flyback, and $\mathrm{t}_{\text {prop }}$ the propagation delay.
5. NCP1072 130 kHz on demand only.
6. Oscillator frequency is measured with disabled jittering.
7. For coldest temperature, QA sampling at $-40^{\circ} \mathrm{C}$ in production and $-55^{\circ} \mathrm{C}$ specification is Guaranteed by Characterization.

ELECTRICAL CHARACTERISTICS
(For all NCP107X products except NCP1072P100BG: For typical values $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{J}=40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ unless otherwise noted)
(For NCP1072P100BG: For typical values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{J}=-55^{\circ} \mathrm{C}$ (Note 7) to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ unless otherwise noted)

Symbol	Rating	Pin	Min	Typ	Max	Unit

PROTECTIONS

$\mathrm{V}_{\text {HV(EN })}$	The drain pin voltage above which allows MOSFET operate, which is detected after TSD, UVLO, SCP, or $\mathrm{V}_{\text {CC }}$ OVP mode.	5	72	91	110	V

TEMPERATURE MANAGEMENT

TSD	Temperature shutdown (Guaranteed by design)	-	150			${ }^{\circ} \mathrm{C}$
	Hysteresis in shutdown (Guaranteed by design)	-		50		${ }^{\circ} \mathrm{C}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. The final switch current is: $I_{\operatorname{IPK}(0)} /\left(\mathrm{V}_{\text {in }} / L_{p}+\mathrm{S}_{\mathrm{a}}\right) \times \mathrm{V}_{\text {in }} / L_{p}+\mathrm{V}_{\text {in }} / L_{p} \times \mathrm{t}_{\text {prop }}$, with S_{a} the built-in slope compensation, Vin the input voltage, L_{p} the primary inductor in a flyback, and $\mathrm{t}_{\text {prop }}$ the propagation delay.
5. NCP1072 130 kHz on demand only.
6. Oscillator frequency is measured with disabled jittering.
7. For coldest temperature, QA sampling at $-40^{\circ} \mathrm{C}$ in production and $-55^{\circ} \mathrm{C}$ specification is Guaranteed by Characterization.

Figure 5. $\mathrm{V}_{\mathrm{CC}(\mathrm{on})}$ vs. Temperature

Figure 7. $\mathbf{V}_{\mathbf{C C}(\text { off })}$ vs. Temperature

Figure 9. $\mathbf{I}_{\mathrm{CC} 1}$ vs. Temperature

Figure 6. $\mathrm{V}_{\mathbf{C C}(\min)}$ vs. Temperature

Figure 8. $\mathbf{V}_{\mathbf{C C} \text { (clamp) }}$ vs. Temperature

Figure 10. $\mathbf{R}_{\text {DS(on) }}$ vs. Temperature

TYPICAL CHARACTERISTICS

Figure 11. IDSS(off) $v s$. Temperature

Figure 13. $I_{\text {start2 }}$ vs. Temperature

Figure 15. Fosc vs. Temperature

Figure 12. $\mathrm{I}_{\text {start }}$ vs. Temperature

Figure 14. $\mathrm{I}_{\mathrm{IPK}(0)}$ vs. Temperature

Figure 16. $\mathrm{D}_{(\max)}$ vs. Temperature

TYPICAL CHARACTERISTICS

Figure 17. $\mathrm{F}_{\text {min }}$ vs. Temperature

Figure 19. $\mathrm{t}_{\text {recovery }}$ Vs. Temperature

Figure 21. $\mathrm{V}_{\mathrm{HV}(E N)}$ vs. Temperature

Figure 18. $\mathbf{t s c p}_{\mathrm{SCP}}$ vs. Temperature

Figure 20. Iovp vs. Temperature

Figure 22. Drain Current Peak during Transformer Saturation vs. Junction Temperature

Figure 23. Breakdown Voltage vs. Temperature

APPLICATION INFORMATION

Introduction

The NCP107x offers a complete current-mode control solution. The component integrates everything needed to build a rugged and low-cost Switch-Mode Power Supply (SMPS) featuring low standby power. The Quick Selection Table on page 2 details the differences between references, mainly peak current setpoints and operating frequency.

- Current-mode operation: the controller uses current-mode control architecture.
- 700 V Power MOSFET: Due to ON Semiconductor Very High Voltage Integrated Circuit technology, the circuit hosts a high - voltage power MOSFET featuring a $22 / 11 / 4.7 \Omega \mathrm{R}_{\mathrm{DS}(\text { on })}-\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. This value lets the designer build a power supply up to respectively 7.75 W, 10 W and 15 W operated on universal mains. An internal current source delivers the startup current, necessary to crank the power supply.
- Dynamic Self-Supply: Due to the internal high voltage current source, this device could be used in the application without the auxiliary winding to provide supply voltage.
- Short circuit protection: by permanently monitoring the feedback line activity, the IC is able to detect the presence of a short-circuit, immediately reducing the output power for a total system protection. A tsCP timer is started as soon as the feedback current is below threshold, $\mathrm{I}_{\mathrm{FB}(f a u l t)}$, which indicates the maximum peak current. If at the end of this timer the fault is still present, then the device enters a safe, auto-recovery burst mode, affected by a fixed timer recurrence, $\mathrm{t}_{\text {recovery. }}$. Once the short has disappeared, the controller resumes and goes back to normal operation.
- Built-in V_{CC} Over Voltage Protection: when the auxiliary winding is used to bias the V_{CC} pin (no DSS), an internal active clamp connected between V_{CC} and ground limits the supply dynamics to $\mathrm{V}_{\mathrm{CC}(\text { clamp })}$. In case the current injected in this clamp exceeds a level of 6.0 mA (minimum), the controller immediately stops switching and waits a full timer period ($\mathrm{t}_{\text {recovery }}$) before
attempting to restart. If the fault is gone, the controller resumes operation. If the fault is still there, e.g. a broken opto-coupler, the controller protects the load through a safe burst mode.
- Line detection: An internal comparator monitors the drain voltage as recovering from one of the following situations:
- Short Circuit Protection,
- V_{CC} OVP is confirmed,
- UVLO
- TSD

If the drain voltage is lower than the internal threshold $\left(\mathrm{V}_{\mathrm{HV}(\mathrm{EN})}\right)$, the internal power switch is inhibited. This avoids operating at too low ac input. This is also called brown-in function in some fields.

- Frequency jittering: an internal low-frequency modulation signal varies the pace at which the oscillator frequency is modulated. This helps spreading out energy in conducted noise analysis. To improve the EMI signature at low power levels, the jittering remains active in frequency foldback mode.
- Soft-Start: a 1 ms soft-start ensures a smooth startup sequence, reducing output overshoots.
- Frequency foldback capability: a continuous flow of pulses is not compatible with no-load/light-load standby power requirements. To excel in this domain, the controller observes the feedback current information and when it reaches a level of $\mathrm{I}_{\text {FBfold }}$, the oscillator then starts to reduce its switching frequency as the feedback current continues to increase (the power demand continues to reduce). It can go down to 25 kHz (typical) reached for a feedback level of $\mathrm{I}_{\mathrm{FBfold}(\text { end })}$ ($100 \mu \mathrm{~A}$ roughly). At this point, if the power continues to drop, the controller enters classical skip-cycle mode.
- Skip: if SMPS naturally exhibits a good efficiency at nominal load, they begin to be less efficient when the output power demand diminishes. By skipping un-needed switching cycles, the NCP107x drastically reduces the power wasted during light load conditions.

APPLICATION INFORMATION

Startup Sequence

When the power supply is first powered from the mains outlet, the internal current source is biased and charges up the V_{CC} capacitor from the drain pin. Once the voltage on this V_{CC} capacitor reaches the $\mathrm{V}_{\mathrm{CC}(o n)}$ level, the current
source turns off and pulses are delivered by the output stage: the circuit is awake and activates the power MOSFET if the bulk voltage is above $\mathrm{V}_{\mathrm{HV}(\mathrm{EN})}$ level. Figure 24 details the simplified internal circuitry.

Figure 24. The Internal Arrangement of the Start-up Circuitry

Being loaded by the circuit consumption, the voltage on the V_{CC} capacitor goes down. When V_{CC} is below $\mathrm{V}_{\mathrm{CC}(\text { min })}$ level, it activates the internal current source to bring V_{CC} toward $\mathrm{V}_{\mathrm{CC}(\mathrm{on})}$ level and stops again: a cycle takes place
whose low frequency depends on the V_{CC} capacitor and the IC consumption. A 1.4 V ripple takes place on the V_{CC} pin whose average value equals $\left(\mathrm{V}_{\mathrm{CC}(\mathrm{on})}+\mathrm{V}_{\mathrm{CC}(\min)}\right) / 2$. Figure 25 portrays a typical operation of the DSS.

Figure 25. The Charge/Discharge Cycle Over a $1 \mu \mathrm{~F} \mathrm{~V}_{\mathrm{cc}}$ Capacitor

As one can see, even if there is auxiliary winding to provide energy for V_{CC}, it happens that the device is still biased by DSS during start-up time or some fault mode when the voltage on auxiliary winding is not ready yet. The V_{CC} capacitor shall be dimensioned to avoid V_{CC} crosses $\mathrm{V}_{\mathrm{CC}(\text { off })}$ level, which stops operation. The $\Delta \mathrm{V}$ between $\mathrm{V}_{\mathrm{CC}(\min)}$ and $\mathrm{V}_{\mathrm{CC}(\text { off })}$ is 0.4 V . There is no current source to charge V_{CC} capacitor when driver is on, i.e. drain voltage is close to zero. Hence the V_{CC} capacitor can be calculated using

$$
\begin{equation*}
\mathrm{C}_{\mathrm{vcc}} \geq \frac{\mathrm{I}_{\mathrm{CC} 1} \mathrm{D}_{\max }}{\mathrm{f}_{\mathrm{OSC}} \cdot \Delta \mathrm{~V}} \tag{eq.1}
\end{equation*}
$$

Take the NCP1072 65 kHz device as an example. C CVCC should be above

$$
\frac{0.8 \mathrm{~m} \cdot 72 \%}{59 \mathrm{kHz} \cdot 0.4}
$$

A margin that covers the temperature drift and the voltage drop due to switching inside FET should be considered, and thus a capacitor above $0.1 \mu \mathrm{~F}$ is appropriate.

The V_{CC} capacitor has only a supply role and its value does not impact other parameters such as fault duration or the frequency sweep period for instance. As one can see on Figure 24, an internal active zener diode, protects the switcher against lethal V_{CC} runaways. This situation can occur if the feedback loop optocoupler fails, for instance, and you would like to protect the converter against an over voltage event. In that case, the internal current increase incurred by the V_{CC} rapid growth triggers the over voltage
protection (OVP) circuit and immediately stops the output pulses for $\mathrm{t}_{\text {recovery }}$ duration (420 ms typically). Then a new start-up attempt takes place to check whether the fault has disappeared or not. The OVP paragraph gives more design details on this particular section.

Fault Condition - Short-Circuit on $\mathrm{V}_{\text {CC }}$

In some fault situations, a short-circuit can purposely occur between V_{CC} and GND. In high line conditions (V_{HV} $=370 \mathrm{~V}_{\mathrm{DC}}$) the current delivered by the startup device will seriously increase the junction temperature. For instance, since $\mathrm{I}_{\text {start1 }}$ equals 5 mA (the min corresponds to the highest T_{j}), the device would dissipate $370 \times 5 \mathrm{~m}=1.85 \mathrm{~W}$. To avoid this situation, the controller includes a novel circuitry made of two startup levels, $\mathrm{I}_{\text {start1 }}$ and $\mathrm{I}_{\text {start2 }}$. At power-up, as long as V_{CC} is below a 2.4 V level, the source delivers $\mathrm{I}_{\text {start2 }}$ (around $500 \mu \mathrm{~A}$ typical), then, when V_{CC} reaches 2.4 V , the source smoothly transitions to $\mathrm{I}_{\text {start1 }}$ and delivers its nominal value. As a result, in case of short-circuit between V_{CC} and GND, the power dissipation will drop to $370 \times 500 \mathrm{u}=$ 185 mW . Figure 25 portrays this particular behavior.

The first startup period is calculated by the formula C x V $=\mathrm{Ixt}$, which implies a $1 \mu \times 2.4 / 500 \mathrm{u}=4.8 \mathrm{~ms}$ startup time for the first sequence. The second sequence is obtained by toggling the source to 8 mA with a delta V of $\mathrm{V}_{\mathrm{CC}(\mathrm{on})}$ -$\mathrm{V}_{\mathrm{CCTH}}=8.2-2.4=5.8 \mathrm{~V}$, which finally leads to a second startup time of $1 \mu \times 5.8 / 8 \mathrm{~m}=0.725 \mathrm{~ms}$. The total startup time becomes $4.8 \mathrm{~m}+0.725 \mathrm{~m}=5.525 \mathrm{~ms}$. Please note that this calculation is approximated by the presence of the knee in the vicinity of the transition.

Fault Condition - Output Short-Circuit

As soon as V_{CC} reaches $\mathrm{V}_{\mathrm{CC}(o n)}$, drive pulses are internally enabled. If everything is correct, the auxiliary winding increases the voltage on the V_{CC} pin as the output voltage rises. During the start-sequence, the controller smoothly ramps up the peak drain current to maximum setting, i.e. $\mathrm{I}_{\text {IPK }}$, which is reached after a typical period of 1 ms . When the output voltage is not regulated, the current coming through FB pin is below $\mathrm{I}_{\mathrm{FBf} \text { fault }}$ level ($35 \mu \mathrm{~A}$ typically), which is not only during the startup period but also anytime an overload occurs, an internal error flag is
asserted, Ipflag, indicating that the system has reached its maximum current limit set point. The assertion of this flag triggers a fault counter $\mathrm{t}_{\mathrm{SCP}}$ (53 ms typically). If at counter completion, Ipflag remains asserted, all driving pulses are stopped and the part stays off in $\mathrm{t}_{\text {recovery }}$ duration (about 420 ms). A new attempt to re-start occurs and will last 53 ms providing the fault is still present. If the fault still affects the output, a safe burst mode is entered, affected by a low duty-cycle operation (11%). When the fault disappears, the power supply quickly resumes operation. Figure 26 depicts this particular mode:

Figure 26. In Case of Short-Circuit or Overload, the NCP107X Protects Itself and the Power Supply Via a Low Frequency Burst Mode. The V_{cc} is Maintained by the Current Source and Self-supplies the Controller.

Auto-Recovery Over Voltage Protection

The particular NCP107X arrangement offers a simple way to prevent output voltage runaway when the optocoupler fails. As Figure 27 shows, an active zener diode monitors and protects the V_{CC} pin. Below its equivalent breakdown voltage, that is to say 8.4 V typical, no current flows in it. If the auxiliary V_{CC} pushes too much current inside the zener, then the controller considers an OVP situation and stops the internal drivers. When an OVP occurs, all switching pulses are permanently disabled. After $\mathrm{t}_{\text {recovery }}$ delay, it resumes the internal drivers. If the failure symptom still exists, e.g. feedback opto-coupler fails, the device keeps the auto-recovery OVP mode.

Figure 27 shows that the insertion of a resistor ($R_{\text {limit }}$) between the auxiliary dc level and the V_{CC} pin is mandatory a) not to damage the internal 8.4 V zener diode during an overshoot for instance (absolute maximum current is $15 \mathrm{~mA})$ b) to implement the fail-safe optocoupler protection (OVP) as offered by the active clamp. Please note that there cannot be bad interaction between the clamping voltage of the internal zener and $\mathrm{V}_{\mathrm{CC}(\mathrm{on})}$ since this clamping voltage is actually built on top of $\mathrm{V}_{\mathrm{CC}(o n)}$ with a fixed amount of offset (200 mV typical). $R_{\text {limit }}$ should be carefully selected to avoid
triggering the OVP as we discussed, but also to avoid disturbing the V_{CC} in low / light load conditions. The below lines detail how to evaluate the $R_{\text {limit }}$ value...
Self-supplying controllers in extremely low standby applications often puzzles the designer. Actually, if a SMPS operated at nominal load can deliver an auxiliary voltage of an arbitrary $16 \mathrm{~V}\left(\mathrm{~V}_{\text {nom }}\right)$, this voltage can drop below 10 V ($\mathrm{V}_{\text {stby }}$) when entering standby. This is because the recurrence of the switching pulses expands so much that the low frequency re-fueling rate of the V_{CC} capacitor is not enough to keep a proper auxiliary voltage. Figure 28 portrays a typical scope shot of a SMPS entering deep standby (output un-loaded). Thus, care must be taken when calculating $R_{\text {limit }} 1$) to not trigger the V_{CC} over current latch (by injecting 6 mA into the active clamp - always use the minimum value for worse case design) in normal operation but 2) not to drop too much voltage over $R_{\text {limit }}$ when entering standby. Otherwise, the converter will enter dynamic self supply mode (DSS mode), which increases the power dissipation. Based on these recommendations, we are able to bound $R_{\text {limit }}$ between two equations:
$\frac{\mathrm{V}_{\text {nom }}-\mathrm{V}_{\mathrm{CC} \text { (clamp) }}}{\mathrm{I}_{\text {trip }}} \leq \mathrm{R}_{\text {limit }} \leq \frac{\mathrm{V}_{\text {stby }}-\mathrm{V}_{\mathrm{CC}(\text { min })}}{\mathrm{I}_{\text {CCskip }}}$
(eq. 2)

Where:
$\mathbf{V}_{\text {nom }}$ is the auxiliary voltage at nominal load
$\mathbf{V}_{\text {stby }}$ is the auxiliary voltage when standby is entered
$\mathrm{I}_{\text {trip }}$ is the current corresponding to the nominal operation. It thus must be selected to avoid false tripping in overshoot conditions. Always use the minimum of the specification for a robust design, i.e. $\mathrm{I}_{\text {trip }}<\mathrm{I}_{\mathrm{OVP}}$.
ICCskip is the controller consumption during skip mode.

This number decreases compared to normal operation since the part in standby does almost not switch. It is around 0.36 mA for the NCP1072 65 kHz version.
$\mathbf{V}_{\mathbf{C C}(\mathbf{m i n})}$ is the level above which the auxiliary voltage must be maintained to keep the controller away from the dynamic self supply mode (DSS mode), which is not a problem in itself if low standby power does not matter.
If a further improvement on standby efficiency is concerned, it is good to obtain V_{CC} around 8 V at no load condition in order not to re-activate the internal clamp circuit.

Figure 27. A More Detailed View of the NCP107x Offers Better Insight on How to Properly Wire an Auxiliary Winding

Since $R_{\text {limit }}$ shall not bother the controller in standby, e.g. keep V_{CC} to above $\mathrm{V}_{\mathrm{CC}(\min)}(7.2 \mathrm{~V}$ maximum), we purposely select a $\mathrm{V}_{\text {nom }}$ well above this value. As explained before, experience shows that a 40% decrease can be seen on auxiliary windings from nominal operation down to standby mode. Let's select a nominal auxiliary winding of 13 V to offer sufficient margin regarding 7.2 V when in standby ($R_{\text {limit }}$ also drops voltage in standby...). Plugging the values in Equation 2 gives the limits within which $R_{\text {limit }}$ shall be selected:

$$
\frac{13-8.4}{6 m} \leq R_{\text {limit }} \leq \frac{8-7.2}{0.36 m}
$$

that is to say: $0.77 \mathrm{k} \Omega<$ Rlimit $<2.2 \mathrm{k} \Omega$.
If we design a 65 kHz power supply delivering 12 V , then the ratio between auxiliary and power must be: $13 / 12=$
1.08. The OVP latch will activate when the clamp current exceeds 6 mA . This will occur when Vauxiliary grows-up to:

1. $8.4+0.77 \mathrm{k} \mathrm{x}(6 \mathrm{~m}+0.8 \mathrm{~m}) \approx 13.6 \mathrm{~V}$ for the first boundary $\left(R_{\text {limit }}=0.77 \mathrm{k} \Omega\right)$
2. $8.4+2.2 \mathrm{kx}(6 \mathrm{~m}+0.8 \mathrm{~m}) \approx 23.4 \mathrm{~V}$ for the second boundary $\left(R_{\text {limit }}=2.2 \mathrm{k} \Omega\right)$
Due to a 1.08 ratio between the auxiliary V_{CC} and the power winding, the OVP will be seen as a lower overshoot on the real output:

$$
\begin{aligned}
& \text { 1. } 13.6 / 1.08 \approx 12.6 \mathrm{~V} \\
& \text { 2. } 23.4 / 1.08 \approx 21.7 \mathrm{~V}
\end{aligned}
$$

As one can see, tweaking the $R_{\text {limit }}$ value will allow the selection of a given overvoltage output level. Theoretically predicting the auxiliary drop from nominal to standby is an

NCP1070, NCP1071, NCP1072, NCP1075, NCP1076, NCP1077

almost impossible exercise since many parameters are involved, including the converter time constants. Fine tuning of $R_{\text {limit }}$ thus requires a few iterations and experiments on a breadboard to check the auxiliary voltage
variations but also the output voltage excursion in fault. Once properly adjusted, the fail-safe protection will preclude any lethal voltage runaways in case a problem would occur in the feedback loop.

Figure 28. The Burst Frequency Becomes so Low That it is Difficult to Keep an Adequate Level on the Auxiliary VCc...

Figure 29 describes the main signal variations when the part operates in auto-recovery OVP:

Figure 29. If the V_{Cc} Current Exceeds a Certain Threshold, an Auto-Recovery Protection is Activated

Improving the precision in auto-recovery OVP

Given the OVP variations the internal trip current dispersion incur, it is sometimes more interesting to explore a different solution, improving the situation to the cost of a minimal amount of surrounding elements. Figure 30 shows that adding a simple zener diode on top of the limiting resistor, offers a better precision since what matters now is the internal $\mathrm{V}_{\mathrm{CC}(\mathrm{on})}$ breakdown plus the zener voltage. A resistor in series with the zener diodes keeps the maximum current in the V_{CC} pin below the maximum rating of 15 mA just before trip the OVP.

Soft-Start

The NCP107X features a 1 ms soft-start which reduces the power-on stress but also contributes to lower the output overshoot. Figure 31 shows a typical operating waveform. The NCP107X features a novel patented structure which offers a better soft-start ramp, almost ignoring the start-up pedestal inherent to traditional current-mode supplies:

Figure 30. A Simple Zener Diode Added in Parallel

Figure 31. The 1 ms soft-start sequence

Jittering

Frequency jittering is a method used to soften the EMI signature by spreading the energy in the vicinity of the main switching component. The NCP107X offers a $\pm 6 \%$ deviation of the nominal switching frequency. The sweep
sawtooth is internally generated and modulates the clock up and down with a fixed frequency of 300 Hz . Figure 32 shows the relationship between the jitter ramp and the frequency deviation. It is not possible to externally disable the jitter.

Figure 32. Modulation Effects on the Clock Signal by the Jittering Sawtooth

Line Detection

An internal comparator monitors the drain voltage as recovering from one of the following situations:

- Short Circuit Protection,
- V_{CC} OVP is confirmed,
- UVLO
- TSD

If the drain voltage is lower than the internal threshold $\mathrm{V}_{\mathrm{HV}(\mathrm{EN})}$ (91 Vdc typically), the internal power switch is inhibited. This avoids operating at too low ac input. This is also called brown-in function in some fields.

Frequency Foldback

The reduction of no-load standby power associated with the need for improving the efficiency, requires to change the traditional fixed-frequency type of operation. This device implements a switching frequency folback when the feedback current passes above a certain level, $\mathrm{I}_{\text {FBfold }}$, set around $68 \mu \mathrm{~A}$. At this point, the oscillator enters frequency foldback and reduces its switching frequency.
The internal peak current set-point is following the feedback current information until its level reaches the minimal freezing level point of $\mathrm{I}_{\text {Freeze }}$. The only way to further reduce the transmitted power is to diminish the operating frequency down to $\mathrm{F}_{\min }$ (25 kHz typically). This value is reached at a feedback current level of $\mathrm{I}_{\mathrm{FBfold}(\mathrm{end})}$. Below this point, if the output power continues to decrease, the part enters skip cycle for the best noise-free performance in no-load conditions. Figures 33 and 34 depict the adopted scheme for the part.

Figure 33. By Observing the Current on the Feedback Pin, the Controller Reduces its Switching Frequency for an Improved Performance at Light Load

NCP1070, NCP1071, NCP1072, NCP1075, NCP1076, NCP1077

Figure 34. Ipk Set-point is Frozen at Lower Power Demand.

Feedback and Skip

Figure 35 depicts the relationship between feedback voltage and current. The feedback pin operates linearly as the absolute value of feedback current (I_{FB}) is above $40 \mu \mathrm{~A}$.

In this linear operating range, the dynamic resistance is $19.5 \mathrm{k} \Omega$ typically $\left(\mathrm{R}_{\mathrm{FB}(\mathrm{up})}\right)$ and the effective pull up voltage is 3.3 V typically $\left(\mathrm{V}_{\mathrm{FB}(\mathrm{REF})}\right)$. When I_{FB} is below $40 \mu \mathrm{~A}$, the FB voltage will jump to close to 4.5 V .

Figure 35. Feedback Voltage vs. Current

Figure 36 depicts the skip mode block diagram. When the FB current information reaches $I_{\text {FBskip }}$, the internal clock to set the flip-flop is blanked and the internal consumption of the controller is decreased. The hysteresis of internal skip
comparator is minimized to lower the ripple of the auxiliary voltage for V_{CC} pin and $\mathrm{V}_{\text {OUT }}$ of power supply during skip mode. It easies the design of V_{CC} over load range.

Figure 36. Skip Cycle Schematic

Ramp Compensation and Ipk Set-point

In order to allow the NCP107X to operate in CCM with a duty cycle above 50%, a fixed slope compensation is internally applied to the current-mode control.

Here we got a table of the ramp compensation, the initial current set point, and the final current set-point of different versions of switcher.

	Fsw	Sa	Ipk(Duty = 50\%)	Ipk(0)
NCP1070	65 kHz	$7 \mathrm{~mA} / \mathrm{us}$	250 mA	304 mA
	100 kHz	$11 \mathrm{~mA} / \mathrm{us}$		
	130 kHz	$14 \mathrm{~mA} / \mathrm{\mu s}$		
NCP1071	65 kHz	$10 \mathrm{~mA} / \mathrm{\mu s}$	350 mA	425 mA
	100 kHz	$15 \mathrm{~mA} / \mu \mathrm{s}$		
	130 kHz	$20 \mathrm{~mA} / \mathrm{\mu s}$		
NCP1072	65 kHz	$4.2 \mathrm{~mA} / \mathrm{\mu s}$	250 mA	282 mA
	100 kHz	$6.5 \mathrm{~mA} / \mathrm{us}$		
	130 kHz	8.4 mA/ $/ \mathrm{s}$		
NCP1075	65 kHz	$7.5 \mathrm{~mA} / \mathrm{us}$	450 mA	508 mA
	100 kHz	$11.5 \mathrm{~mA} / \mathrm{us}$		
	130 kHz	$15 \mathrm{~mA} / \mathrm{\mu s}$		
NCP1076	65 kHz	$15 \mathrm{~mA} / \mu \mathrm{s}$	650 mA	765 mA
	100 kHz	$23 \mathrm{~mA} / \mathrm{\mu s}$		
	130 kHz	$30 \mathrm{~mA} / \mathrm{\mu s}$		
NCP1077	65 kHz	$18 \mathrm{~mA} / \mathrm{\mu s}$	800 mA	940 mA
	100 kHz	$28 \mathrm{~mA} / \mu \mathrm{s}$		
	130 kHz	$36 \mathrm{~mA} / \mathrm{\mu s}$		

NCP1070, NCP1071, NCP1072, NCP1075, NCP1076, NCP1077

The Figure 37 depicts the variation of I_{PK} set-point vs. the power switcher duty ratio, which is caused by the internal ramp compensation.

Figure 37. $I_{\text {PK }}$ Set-point Varies with Power Switch On Time, Which is Caused by the Ramp Compensation

Design Procedure

The design of an SMPS around a monolithic device does not differ from that of a standard circuit using a controller and a MOSFET. However, one needs to be aware of certain characteristics specific of monolithic devices. Let us follow the steps:
$\mathrm{V}_{\text {in }} \min =90$ Vac or 127 Vdc once rectified, assuming a low bulk ripple
$\mathrm{V}_{\text {in }} \max =265 \mathrm{Vac}$ or 375 Vdc
$\mathrm{V}_{\text {out }}=12 \mathrm{~V}$
$\mathrm{P}_{\text {out }}=10 \mathrm{~W}$
Operating mode is CCM
$\eta=0.8$

1. The lateral MOSFET body-diode shall never be forward biased, either during start-up (because of a large leakage inductance) or in normal operation as shown by Figure 38. This condition sets the
maximum voltage that can be reflected during $t_{\text {off }}$. As a result, the Flyback voltage which is reflected on the drain at the switch opening cannot be larger than the input voltage. When selecting components, you thus must adopt a turn ratio which adheres to the following equation:

$$
\begin{equation*}
N\left(V_{\text {out }}+V_{f}\right)<V_{\text {in,min }} \tag{eq.3}
\end{equation*}
$$

2. In our case, since we operate from a 127 V DC rail while delivering 12 V , we can select a reflected voltage of 120 Vdc maximum. Therefore, the turn ratio Np :Ns must be smaller than
$\frac{V_{\text {reflect }}}{V_{\text {out }}+V_{f}}=\frac{120}{12+0.5}=9.6$
or $\mathrm{Np}: \mathrm{Ns}<9.6$. Here we choose $\mathrm{N}=8$ in this case. We will see later on how it affects the calculation.

Figure 38. The Drain-Source Wave Shall Always be Positive

Figure 39. Primary Inductance Current Evolution in CCM
3. Lateral MOSFETs have a poorly doped body-diode which naturally limits their ability to sustain the avalanche. A traditional RCD clamping network shall thus be installed to protect the MOSFET. In some low power applications, a simple capacitor can also be used since

$$
V_{\text {drain,max }}=V_{\text {in }}+N\left(V_{\text {out }}+V_{f}\right)+I_{\text {peak }} \sqrt{\frac{L_{f}}{C_{\text {tot }}}}
$$

(eq. 4)
where L_{f} is the leakage inductance, $C_{t o t}$ the total capacitance at the drain node (which is increased by the capacitor you will wire between drain and source), N the $\mathrm{N}_{\mathrm{P}}: \mathrm{N}_{\mathrm{S}}$ turn ratio, $V_{\text {out }}$ the output voltage, V_{f} the secondary diode forward drop and finally, $I_{\text {peak }}$ the maximum peak current. Worse case occurs when the SMPS is very close to regulation, e.g. the $V_{\text {out }}$ target is almost reached and $I_{\text {peak }}$ is still pushed to the maximum. For this design, we have selected our maximum voltage around 650 V (at $V_{\text {in }}$ $=375 \mathrm{Vdc}$). This voltage is given by the $R C D$ clamp installed from the drain to the bulk voltage. We will see how to calculate it later on.
4. Calculate the maximum operating duty-cycle for this flyback converter operated in CCM:

$$
d_{\max }=\frac{N\left(V_{\text {out }}+V_{f}\right)}{N\left(V_{\text {out }}+V_{f}\right)+V_{\text {in, min }}}=\frac{1}{1+\frac{v_{\text {in, min }}}{N\left(v_{\text {out }}+v_{f}\right)}}=0.44
$$

5. To obtain the primary inductance, we have the choice between two equations:

$$
\begin{equation*}
L=\frac{\left(V_{i n} d\right)^{2}}{f_{\text {sw }} K P_{i n}} \tag{eq.6}
\end{equation*}
$$

$$
\mathrm{K}=\frac{\Delta \mathrm{I}_{\mathrm{L}}}{\mathrm{I}_{\mathrm{Lavg}}}
$$

and defines the amount of ripple we want in CCM (see Figure 39).

- Small K: deep CCM, implying a large primary inductance, a low bandwidth and a large leakage inductance.
- Large K: approaching BCM where the rms losses are worse, but smaller inductance, leading to a better leakage inductance.
From Equation 6, a K factor of 1 (50% ripple), gives an inductance of:

$$
\begin{aligned}
\mathrm{L} & =\frac{(127 \times 0.44)^{2}}{65 \mathrm{k} \times 1 \times 12.75}=3.8 \mathrm{mH} \\
\Delta \mathrm{~L}_{\mathrm{L}} & =\frac{\mathrm{V}_{\mathrm{in}, \mathrm{~min}} \cdot d_{\text {max }}}{L \mathrm{~F}_{\text {SW }}}=\frac{127 \times 0.44}{3.8 \times 65 \mathrm{k}} \\
& =223 \mathrm{~mA} \text { peak-to-peak }
\end{aligned}
$$

The peak current can be evaluated to be:

$$
\begin{aligned}
\mathrm{I}_{\text {peak }} & =\frac{\mathrm{I}_{\text {avg }}}{\mathrm{d}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=\mathrm{I}_{\text {peak }}=\frac{98 \mathrm{~m}}{0.44}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2} \\
& =335 \mathrm{~mA}
\end{aligned}
$$

On $\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\text {Lavg }}$ can also be calculated:
$I_{\text {Lavg }}=I_{\text {peak }}-\frac{\Delta I_{\mathrm{L}}}{2}=0.34-0.112=223 \mathrm{~mA}$
6. Based on the above numbers, we can now evaluate the conduction losses:

$$
\begin{aligned}
I_{d, r m s} & =\sqrt{d\left(I_{\text {peak }}^{2}-I_{\text {peak }} \Delta I_{L}+\frac{\Delta I_{\mathrm{L}}^{2}}{3}\right.} \\
& =\sqrt{0.44\left(0.335^{2}-0.335 \cdot 0.223+\frac{0.223^{2}}{3}\right.} \\
& =154 \mathrm{~mA}
\end{aligned}
$$

If we take the maximum $\mathrm{R}_{\mathrm{ds}(\text { on })}$ for a $125^{\circ} \mathrm{C}$ junction temperature, i.e. 24Ω, then conduction losses worse case are:

$$
P_{\text {cond }}=I_{d, r m s}{ }^{2} R_{D S(o n)}=570 \mathrm{~mW}
$$

7. Off-time and on-time switching losses can be estimated based on the following calculations:

$$
\begin{aligned}
P_{\text {off }} & =\frac{I_{\text {peak }}\left(V_{\text {bulk }}+V_{\text {clamp }}\right) t_{\text {off }}}{2 T_{\text {sw }}} \\
& =\frac{0.335 \times(127+120 \cdot 2) \times 10 \mathrm{n}}{2 \times 15.4 \mu} \\
& =36 \mathrm{~mW}
\end{aligned}
$$

(eq. 7)

Where, assume the $\mathrm{V}_{\text {clamp }}$ is equal to two times of reflected voltage.

$$
\begin{align*}
P_{\text {on }} & =\frac{I_{\text {valley }}\left(V_{\text {bulk }}+N\left(V_{\text {out }}+V_{f}\right)\right) t_{\text {on }}}{6 T_{\text {sw }}} \\
& =\frac{0.111 \times(127+100) \times 20 \mathrm{n}}{6 \times 15.4 \mu} \tag{eq.8}\\
& =5.5 \mathrm{~mW}
\end{align*}
$$

It is noted that the overlap of voltage and current seen on MOSFET during turning on and off duration is dependent on the snubber and parasitic capacitance seen from drain pin. Therefore the $t_{\text {off }}$ and $t_{\text {on }}$ in Equations 7 and 8 have to be modified after measuring on the bench.
8. The theoretical total power is then $0.570+0.036+$ $0.0055=611 \mathrm{~mW}$
9. If the NCP107X operates at DSS mode, then the losses caused by DSS mode should be counted as losses of this device on the following calculation:

$$
\begin{equation*}
P_{\mathrm{DSS}}=\mathrm{I}_{\mathrm{CC} 1} \cdot \mathrm{~V}_{\mathrm{in}, \max }=1 \mathrm{~m} \cdot 375=375 \mathrm{~mW} \tag{eq.9}
\end{equation*}
$$

MOSFET protection

As in any Flyback design, it is important to limit the drain excursion to a safe value, e.g. below the MOSFET BVdss which is 700 V. Figure 40a, b, c present possible implementations:

Figure 40. Different Options to Clamp the Leakage Spike

Figure $40 a$: the simple capacitor limits the voltage according to The lateral MOSFET body-diode shall never be forward biased, either during start-up (because of a large leakage inductance) or in normal operation as shown by Figure 38. This condition sets the maximum voltage that can be reflected during $t_{\text {off }}$. As a result, the Flyback voltage which is reflected on the drain at the switch opening cannot be larger than the input voltage. When selecting components, you thus must adopt a turn ratio which adheres to the following equation: Equation 3. This option is only valid for low power applications, e.g. below 5 W , otherwise chances exist to destroy the MOSFET. After evaluating the leakage inductance, you can compute C with Equation 4. Typical values are between 100 pF and up to 470 pF . Large capacitors increase capacitive losses..

Figure $40 b$: the most standard circuitry is called the $R C D$ network. You calculate $R_{\text {clamp }}$ and $C_{\text {clamp }}$ using the following formulae:

$$
\begin{gather*}
\mathrm{R}_{\text {clamp }}=\frac{2 \mathrm{~V}_{\text {clamp }}\left(\mathrm{V}_{\text {clamp }}-\left(\mathrm{V}_{\text {out }}+\mathrm{V}_{\mathrm{f}}\right) \mathrm{N}\right)}{\mathrm{L}_{\text {leak }} \mathrm{I}_{\text {peak }}{ }^{2} \mathrm{~F}_{\text {sw }}} \tag{eq.10}\\
\mathrm{C}_{\text {clamp }}=\frac{\mathrm{V}_{\text {clamp }}}{\mathrm{V}_{\text {ripple }} \mathrm{F}_{\text {sw }} \mathrm{R}_{\text {clamp }}} \tag{eq.11}
\end{gather*}
$$

$\mathrm{V}_{\text {clamp }}$ is usually selected $50-80 \mathrm{~V}$ above the reflected value $\mathrm{Nx}\left(\mathrm{V}_{\text {out }}+\mathrm{V}_{\mathrm{f}}\right)$. The diode needs to be a fast one and a MUR160 represents a good choice. One major drawback of the RCD network lies in its dependency upon the peak current. Worse case occurs when $\mathrm{I}_{\text {peak }}$ and $\mathrm{V}_{\text {in }}$ are maximum and $V_{\text {out }}$ is close to reach the steady-state value.

Figure $40 c$: this option is probably the most expensive of all three but it offers the best protection degree. If you need a very precise clamping level, you must implement a zener diode or a TVS. There are little technology differences behind a standard zener diode and a TVS. However, the die area is far bigger for a transient suppressor than that of zener. A 5 W zener diode like the 1N5388B will accept 180 W peak power if it lasts less than 8.3 ms . If the peak current in the worse case (e.g. when the PWM circuit maximum current limit works) multiplied by the nominal zener voltage exceeds these 180 W , then the diode will be destroyed when the supply experiences overloads. A transient suppressor like the P6KE200 still dissipates 5 W of continuous power but is able to accept surges up to $600 \mathrm{~W} @ 1 \mathrm{~ms}$. Select the zener or TVS clamping level between 40 to 80 V above the reflected output voltage when the supply is heavily loaded.

