: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NCP1651

Single Stage Power Factor Controller

The NCP1651 is an active, power factor correction controller that can operate over a wide range of input voltages. It is designed for $50 / 60 \mathrm{~Hz}$ power systems. It is a fixed frequency controller that can operate in continuous or discontinuous conduction modes.

The NCP1651 provides a low cost, low component count solution for isolated AC-DC converters with mid-high output voltage requirements. The NCP1651 eases the task of meeting the IEC1000-3-2 harmonic requirements for converters in the range of 50 W - 250 W .

The NCP1651 drives a flyback converter topology to operate in continuous/discontinuous mode and programs the average input current to follow the line voltage in order to provide unity power factor. By using average current mode control CCM algorithm, the NCP1651 can help provide excellent power factor while limiting the peak primary current. Also, the fixed frequency operation eases the input filter design.

The NCP1651 uses a proprietary multiplier design that allows for much more accurate operation than with conventional analog multipliers.

Features

- Fixed Frequency Operation
- Average Current Mode PWM
- Internal High Voltage Startup Circuit
- Continuous or Discontinuous Mode Operation
- High Accuracy Multiplier
- Overtemperature Shutdown
- External Shutdown
- Undervoltage Lockout
- Low Cost/Parts Count Solution
- Ramp Compensation Does Not Affect Oscillator Accuracy
- Pb -Free Package is Available*

Typical Applications

- High Current Battery Chargers
- Front Ends for Distributed Power Systems

PIN CONNECTIONS

OUT	\bigcirc	16	STARTUP
GND 2		15	NC
$\mathrm{C}_{\mathrm{T}} 3$		14	NC
RAMP COMP 4		13	V_{CC}
$\mathrm{I}_{5}+5$		12	$V_{\text {ref }}$
$l_{\text {avg-ftr }} 6$		11	AC COMP
$\mathrm{l}_{\text {avg }} 7$		10	AC REF
FB/SD 8		9	AC INPUT

ORDERING INFORMATION

Device	Package	Shipping †
NCP1651DR2	SOIC-16	2500/Tape \& Reel
NCP1651DR2G	SOIC-16 (Pb-Free)	2500/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING
DIAGRAM DIAGRAM

- A -
AWLYWW d
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PIN FUNCTION DESCRIPTION

Pin No.	Function	Description
1	Output	Drive output for power FET or IGBT. Capable of driving small devices, or can be connected to an external driver for larger transistors.
2	Ground	Ground reference for the circuit.
3	C_{T}	Timing capacitor for the internal oscillator. This capacitor adjusts the oscillator frequency.
4	Ramp Compensation	This pin biases the ramp compensation circuit, to adjust the amount of compensation that is added to the current signal for stability purposes.
5	$\mathrm{I}_{\mathrm{S}_{+}}$	Positive current sense input. Designed to connect to the positive side of the current shunt.
6	$\mathrm{l}_{\text {avg-fltr }}$	A capacitor connected to this pin filters the high frequency component from the instantaneous current waveform, to create a waveform that resembles the average line current.
7	lavg	An external resistor with a low temperature coefficient is connected from this terminal to ground, to set and stabilize the gain of the Current Sense Amplifier output that drives the AC error amplifier.
8	Feedback/ Shutdown	The error signal from the error amplifier circuit is fed via an optocoupler or other isolation circuit, to this pin. A shutdown circuit is also connected to this pin which will put the unit into a low power shutdown mode if this voltage is reduced to less than 0.6 volts.
9	AC Input	The fullwave rectified sinewave input is connected to this pin. This information is used for the reference comparator and the average current compensation circuit.
10	AC Reference	A capacitor is connected to this pin to filter the modulated output of the reference multiplier.
11	AC Compensation	Provides pole for the AC Reference Amplifier. This amplifier compares the sum of the AC input voltage and the low frequency component of the input current to the reference signal. The response must be slow enough to filter out most of the high frequency content of the current signal that is injected from the current sense amplifier, but fast enough to cause minimal distortion to the line frequency information.
12	Vref	6.5 volt regulated reference output.
13	V_{CC}	Provides power to the device. This pin is monitored for undervoltage and the unit will not operate if the V_{CC} voltage is not within the UVLO range. Initial power is supplied to this pin via the high voltage startup network.
14	No Connection	This pin is not available due to spacing considerations of the startup pin.
15	No Connection	This pin is not available due to spacing considerations of the startup pin.
16	Startup	This pin connects to the rectified input signal and provides current to the internal bias circuitry for the startup period of operation.

NOTE: Pins 14 and 15 have not been used for clearance considerations due to the potential voltages present on pin 16. In order to maintain proper spacing between the high voltage and low voltage pins, traces should not be placed on the circuit board between pins 16 and 13.

MAXIMUM RATINGS (Maximum ratings are those that, if exceeded, may cause damage to the device. Electrical Characteristics are not guaranteed over this range.)

Rating	Symbol	Value	Unit
Power Supply Voltage (Operating) Output (Pin 1)	V_{CC}	-0.3 to 18	V
Current Sense Amplifier Input (Pin 5)	$\mathrm{V}^{\left(I_{\mathrm{S}}+\right)}$	-0.3 to 1.0	V
FB/SD Input (Pin 8)	$\mathrm{V}_{\mathrm{FB} / \mathrm{SD}}$	-0.3 to 11	V
C_{T} Input (Pin 3)	V_{CT}	-0.3 to 4.5	V
Line Voltage	$\mathrm{V}_{\text {startup }}$	-0.3 to 500	V
All Other Pins		-0.3 to 6.5	V
Thermal Resistance, Junction-to-Air 0.1 in ${ }^{2}$ Copper 0.5 in 2 Copper	θ_{JA}	130	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Lead		110	
Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	θ_{JL}	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	Pmax	0.77	W
Non-operating Temperature Range	T_{j}	-40 to 125	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.
A. This device series contains ESD protection and exceeds the following tests:

Pins 1-6: Human Body Model 2000 V per MIL-STD-883, Method 3015. Machine Model Method 200 V .
Pin 8 is the HV startup to the device and is rated to the maximum rating of the part, or 500 V .

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=14$ volts, $\mathrm{C}_{\mathrm{T}}=470 \mathrm{pF}, \mathrm{C}_{12}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ for typical values. For min/max values T_{j} is the applicable junction temperature.)

Characteristic	Symbol	Min	Typ	Max	Unit
OSCILLATOR					
Frequency $\mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	$\mathrm{F}_{\text {osc }}$	90	100	110	kHz
Frequency Range (Note 1)	-	25	-	250	kHz
Max Duty Cycle	dmax	0.95	-	-	-
Ramp Peak (Note 1)	$\mathrm{V}_{\text {Rpeak }}$	-	4.0	-	V
Ramp Valley (Note 1)	$\mathrm{V}_{\text {Rvalley }}$	-	0.100	-	V
Ramp Compensation Peak Voltage (Pin 4) (Note 1)	-	-	4.0	-	V
Ramp Compensation Current (Pin 4) (Note 1)	-	-	150	-	$\mu \mathrm{A}$

AC ERROR AMPLIFIER ($\mathrm{V}_{\text {comp }}=2.0 \mathrm{~V}$)

Input Offset Voltage	V_{10}	-	20	-	mV
Transconductance	g_{m}	75	100	150	umho
Output Source	$\mathrm{I}_{\text {Osource }}$	25	70	-	$\mu \mathrm{A}$
Output Sink	$I_{\text {Osink }}$	-25	-70	-	$\mu \mathrm{A}$

CURRENT AMPLIFIER

Input Bias Current (Pin 5)	Ibias	40	60	80	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Offset Voltage }\left(V_{\text {comp }}=2.0\right) \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	VIO	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 20 \end{aligned}$	mV
Current Limit Threshold	lumthr	0.715	-	0.79	V
Output Gain ($150 \mu \mathrm{~A} / 0.150 \mathrm{~V}$) (Voltage Loop Outputs)	-	-	1000	-	umho
Output Gain ($150 \mu \mathrm{~A} / 0.150 \mathrm{~V}$) (AC E/A Output) ($\left.\mathrm{R}_{10}=15 \mathrm{k} \Omega\right)$	-	-	1000	-	umho
Leading Edge Blanking Pulse (Note 1)	$\mathrm{t}_{\text {LEB }}$	-	200	-	ns
Bandwidth (Note 1)	-	-	1.5	-	MHz
PWM Output Voltage Gain $\left(k=\mathrm{V}_{\mathrm{PWM}}+/\left(\mathrm{V}_{\text {sense }+}-\mathrm{V}_{\text {sense- }}\right)\right)$ $\left(\mathrm{V}_{\text {pin } 3}=\mathrm{V}_{\text {pin } 13}=0\right)$	Av	4.0	5.0	6.0	V/V
Current Limit Voltage Gain $\left(\mathrm{k}=\mathrm{Vac}_{\mathrm{e} / \mathrm{a}}-/\left(\mathrm{V}_{\text {sense+ }}-\mathrm{V}_{\text {sense- }}\right)\right)\left(\mathrm{V}_{\text {pin5 }} 9=0\right)(\mathrm{R} 7=15 \mathrm{k})$	Av	8.0	10	12	V/V

AVERAGE CURRENT COMPENSATION AMPLIFIER

Voltage Gain	Av	-	0.75	-	V / V

REFERENCE MULTIPLIER

Dynamic Input Voltage Range Ac Input (p-input) (Note 1) Offset Voltage (a-input)	$V_{\text {max }}$	-	$\begin{gathered} 3.50 \\ 1.0 \end{gathered}$		V
Multiplier Gain $k=\frac{V_{\text {mult out }}}{\left(V_{\text {AC }} / V_{\text {ramp }} \mathrm{pk}\right) \times\left(\mathrm{V}_{\text {LOOPcomp }}-\mathrm{V}_{\text {offset }}\right)}$ (Note 1)	k	-	7.5	-	-

AC INPUT (Pin 5)

Input Bias Current (Total bias current for reference multiplier and current compensation amplifier) (Note 1)	$I_{\text {INbias }}$	-	0.01	-	$\mu \mathrm{A}$

1. Verified by design.

ELECTRICAL CHARACTERISTICS (continued) (Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=14$ volts, $\mathrm{C}_{\mathrm{T}}=470 \mathrm{pF}, \mathrm{C}_{12}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ for typical values. For min/max values T_{j} is the applicable junction temperature.)

Characteristic	Symbol	Min	Typ	Max	Unit
DRIVE OUTPUT					
Source Resistance (1.0 Volt Drop)	$\mathrm{R}_{\text {source }}$	-	8.0	15	Ω
Sink Resistance (1.0 Volt Drop)	$\mathrm{R}_{\text {sink }}$	-	8.0	15	Ω
Rise Time ($\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$)	t_{r}	-	50	-	ns
Fall Time ($\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$)	t_{f}	-	50	-	ns
Output Voltage in UVLO Condition (Drive out $=100 \mu \mathrm{~A}$ in, 1 nF load)	$\mathrm{V}_{\mathrm{O}(\mathrm{UV})}$	-	1.0	10	mV

VOLTAGE REFERENCE

Buffered Output (load $=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{VDC}$, Temperature)	Vrefout	6.24	6.50	6.76
Load Regulation (Buffered Output, lo $=0$ to $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \geq 10 \mathrm{~V}$)	DVrefout	0	-	40

FB/SD PIN

Opto Current Source (Unit Operational, $\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$)	$\mathrm{I}_{\text {OPTO }}$	0.8	1.1	1.4	mA
Opto Current Source (Shutdown, $\mathrm{V}_{\mathrm{FB}}=0.1 \mathrm{~V}$)	-	15	20	25	$\mu \mathrm{~A}$
Input Voltage for 0 Duty Cycle (Note 2)	-	1.5	-	-	-
Input Voltage for 95\% Duty Cycle (Note 2)	-	-	-	4.0	V
Open Circuit Voltage (Device Operational) (Note 2)	V_{OC}	-	-	12	V
Clamp Voltage (Device in Shutdown Mode) (Note 2)	V_{CL}	0.9	1.5	1.6	V
Shutdown Start Up Threshold (Pin 8) (V $\mathrm{V}_{\text {out }}$ Increasing)	V_{SD}	0.40	0.60	0.70	V
Shutdown Hysteresis (Pin 8)	V_{H}	30	75	130	mV

STARTUP/UVLO

UVLO Startup Threshold ($\mathrm{V}_{\text {CC }}$ Increasing)	V_{SU}	10	10.75	11.5	V
UVLO Hysteresis (Shutdown Voltage $=\mathrm{V}_{\mathrm{SU}}-\mathrm{V}_{\mathrm{H}}$)	V_{H}	0.8	1.0	1.2	V
Overtemperature Trip Point (Note 2)	T_{SD}	140	160	180	${ }^{\circ} \mathrm{C}$
Overtemperature Hysteresis (Note 2)	-	-	30	-	${ }^{\circ} \mathrm{C}$

HIGH VOLTAGE STARTUP (Pin $16=50 \mathrm{~V}$)

Startup Current (out of pin 13) $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{UVLO}-0.2 \mathrm{~V}\right)$	I SU	3.0	5.5	8.0	mA
Startup Current (out of pin 13) $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$		5.0	8.5	12	mA
Min. Startup Voltage (pin 16, pin 13 current $=1 \mathrm{~mA})$	V_{SU}	-	17	20	V
Line Pin Leakage (pin 16, Startup Circuit Inhibited)	$\mathrm{I}_{\text {leak }}$				$\mu \mathrm{A}$
$\left(\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$		-	25	40	
$\mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		-	15	80	

TOTAL DEVICE

Operational Bias Current $\left(\mathrm{C}_{\mathrm{L}(\text { Driver })}=1.0 \mathrm{nF}, \mathrm{f}_{\mathrm{osc}}=100 \mathrm{kHz}\right)$	$\mathrm{I}_{\mathrm{BIAS}}$	-	4.0	5.0	mA
Bias Current in Undervoltage Mode	$\mathrm{I}_{\text {Bshutdown }}$	-	0.75	1.2	mA

2. Verified by design.

Figure 1. Block Diagram

Figure 2. Switching Timing Diagram

Figure 3. Divide-by-Eight Counter Timing Diagram

Typical Performance Characteristics
(Test circuits are located in the document TND308/D)

Figure 4. Current Sense Amplifier Gain

Figure 6. Bias Current in Shutdown Mode

Figure 8. Startup Current versus High Voltage

Figure 5. FB/SD V-I Characteristics

Figure 7. Bias Current in Operating Mode

Figure 9. Startup Leakage versus Temperature

Typical Performance Characteristics
(Test circuits are located in the document TND308/D)

Figure 10. UVLO versus Temperature

Figure 12. Reference Multiplier Gain

Figure 14. C_{T} versus Frequency

Figure 11. FB/SD Clamp Voltage versus $V_{\text {Cc }}$

Figure 13. V Cc Cap Charge Time

Figure 15. Ramp Peak versus Frequency

Typical Performance Characteristics
(Test circuits are located in the document TND308/D)

Figure 16. Maximum Duty Cycle versus Frequency

$2.0 \mu \mathrm{~s} / \mathrm{div}$
Figure 18. Transient Response for 6.5 Volt Reference

Figure 17. Capacitance versus 10% to 90% Drive Rise and Fall Times

Figure 19. Frequency versus Temperature

Typical Performance Characteristics
(Test circuits are located in the document TND308/D)

Figure 20. Peak Ramp Voltage versus Temperature

Figure 21. $\mathrm{V}_{\text {ref }}$ Load Regulation

Figure 22. $\mathbf{V}_{\text {ref }}$ in Shutdown Condition

(Allows external converters to be synchronized to the switching frequency of this unit.)
Figure 23. External Shutdown Circuit

Figure 24. Soft-Start Circuit

THEORY OF OPERATION

Introduction

Optimizing the power factor of units operating off of AC lines is becoming more and more important. There are a number of reasons for this.

There are a growing number of government regulations requiring Power Factor Correction PFC. Many of these are originating in Europe. Regulations such as IEC1000-3-2 are forcing equipment to utilize input stages with topologies other than a simple off-line front end which contains a bridge rectifier and capacitor.

There are also system requirements that dictate the use of PFC. In order to obtain the maximum power from an existing circuit in a building, the power factor is very critical. The real power available from such a circuit is:

$$
P_{\text {real }}=V_{\text {rms }} \times I_{\text {rms }} \times P F
$$

A typical off-line converter will have a power factor of 0.5 to 0.6 , which means that for a given circuit breaker rating only 50% to 60% of the maximum power is available. If the power factor is increased to unity, the maximum available power can be obtained.

There is a similar situation in aircraft systems, where a limited supply of power is available from the on-board generators. Increasing the power factor will increase the load on the aircraft without the need for a larger generator.

Figure 25. Voltage and Current Waveforms

Unity power factor is defined as the current waveform being in phase with the voltage, and undistorted. Therefore,
there are two causes of power factor degradation - phase shift and distortion. Phase shift is normally caused by reactive loads such as motors which are inductive, or electroluminescent lighting which is highly capacitive. In such a case the power factor is relatively simple to analyze, and is determined by the phase shift.

$$
P F=\cos \theta
$$

Where θ is the phase angle between the voltage and the current.
Reduced power factor due to distortion is more complicated to analyze and is normally measured with AC analyzers, although most circuit simulation programs can also calculate power factor. One of the major causes of distortion is rectification of the line into a capacitive filter. This causes current spikes that do not follow the input voltage waveform. An example of this type of waveform is shown in the upper diagram in Figure 25.

A power converter with PFC forces the current to follow the input waveform. This reduces the peak current, the rms current and eliminates any phase shift.
In most modern PFC circuits, to lower the input current harmonics, and improve the input power factor, designers have historically used a boost topology. The boost topology can operate in the Continuous (CCM), Discontinuous (DCM), or Critical Conduction Mode.

Most PFC applications using the boost topology are designed to use the universal input ac power 85-265 Vac, 50 or 60 Hz , and provide a regulated DC bus (typically 400 Vdc). In most applications, the load can not operate off the high voltage DC bus, so a DC-DC converter is used to provide isolation between the AC source and load, and provide a low voltage output. The advantages to this system configuration are, low THD, a power factor close to unity, excellent voltage regulation, and transient response on the isolated DC output. The major disadvantage of the boost topology is that two power stages are required which lowers the systems efficiency, increases components count, cost, and increases the size of the power supply.
ON Semiconductor's NCP1651 offers a unique alternative for Power Factor Correction designs, where the NCP1651 has been designed to control a PFC circuit operating in a flyback topology. There are several major advantages to using the flyback topology. First, the user can create a low voltage isolated secondary output, with a single power stage, and still achieve a low input current distortion, and a power factor close to unity. A second advantage, compared to the boost topology with a DC-DC converter, is a lower component count which reduces the size and the cost of the power supply.

The NCP1651 can operate in either the Continuous or Discontinuous Mode of operation, the following analysis will help to highlight the advantages of Continuous versus Discontinuous Mode of operation.

If we look at a single application and compare the results.
$\mathrm{P}_{\mathrm{O}}=90$ watts
Vin $=85-265 \mathrm{~V}_{\text {rms }}$ (analyzed at $85 \mathrm{~V}_{\text {rms }}$ input)
Efficiency $=80 \%$
$\mathrm{P}_{\text {in }}=108 \mathrm{~W}$
$\mathrm{V}_{\mathrm{O}}=48 \mathrm{Vdc}$
Freq $=100 \mathrm{kHz}$
Transformer turns ration $\mathrm{N}=4$

Continuous Mode (CCM)

To force the inductor current to be continuous over the majority of the input voltage range ($85-265 \mathrm{Vac}$), L_{P} needs to be at least 1 mH . Figure 26 shows the typical current through the windings of the flyback transformer. During switch on period, this current flows in the primary and during the switch off time it flows in the secondary.

Figure 26.
The peak current is:
$\mathrm{I}_{\text {PK }}=\mathrm{I}_{\text {avg }}+\left(\left(1.414 \cdot \mathrm{~V}_{\text {in }} \sin \theta \cdot \mathrm{t}_{\text {on }} \cdot 2\right) / \mathrm{L}_{\mathrm{P}}\right)$
where $\mathrm{I}_{\text {avg }}=1.414 \cdot \mathrm{P}_{\text {in }} / \mathrm{V}_{\text {in }} \sin \theta$
$\mathrm{T}_{\text {on }}=\mathrm{T} /\left(\left(\mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{P}} \cdot 1.414 \cdot \mathrm{~V}_{\text {in }} \sin \theta / \mathrm{V}_{\mathrm{O}}\right)+1\right)$
$\mathrm{T}_{\mathrm{on}}=6.19 \mu \mathrm{~s}$
$\mathrm{I}_{\mathrm{PK}}=(1.414 \cdot 113) / 85 \sin \theta+(1.414 \cdot 85 \cdot 6.15 \mu \mathrm{~s} \cdot 2) / 1 \mathrm{mH}$ $=3.35 \mathrm{~A}$

Discontinuous Mode (DCM)

In the discontinuous mode of operation, the inductor current falls to zero prior to the end of the switching period as shown in Figure 27.

Figure 27.
To ensure DCM, LP needs to be reduced to approximately $100 \mu \mathrm{H}$.
$\mathrm{I}_{\mathrm{PK}}=\left(\mathrm{V}_{\text {in }} \sin \theta \cdot 1.414 \cdot \mathrm{t}_{\text {on }}\right) / \mathrm{L}_{\mathrm{P}}$ $\mathrm{I}_{\mathrm{PK}}=1.414 \cdot 85 \sin 90 \cdot 5.18 \mu \mathrm{~s} / 100 \mu \mathrm{H}=6.23 \mathrm{~A}$

The results show that the peak current for a flyback converter operating in the Continuous Conduction Mode is
one half the peak current of a flyback converter operating in the Discontinuous Conduction Mode.

Continuous Conduction Mode

A second result of running in DCM can be higher input current distortion, EMI, and a lower Power Factor, in comparison to CCM. While the higher peak current can be filtered to produce the same performance result, it will require a larger filter.

A simple Fast Fourier Transform (FFT) was run in Spice to provide a comparison between the harmonic current levels for CCM and DCM. The harmonic current levels will affect the size of the input EMI filter which in some applications are required to meet the levels of C.I.S.P.R. In the SPICE FFT model we did not add any front end filtering so the result of the analysis could be compared directly.

Figure 28. Continuous Conduction Mode
At the 100 kHz switching frequency, the rms value from the FFT is 260 mA , and the 2 nd harmonic (200 kHz) is 55 mA rms.

Figure 29. Discontinuous Conduction Mode
At 100 kHz the rms value from the FFT are 2.8 A , and the 2 nd harmonic (200 kHz) is 500 mA rms.

Results

It is clear from the result of our analysis that a flyback PFC converter operating in CCM has half the peak current and one tenth the fundamental (100 kHz) harmonic current compared to a flyback PFC converter operating in DCM. The results are lower conduction losses in the MOSFET, and secondary rectifying diode, and a smaller input EMI filter if the designer needs to meet the requirements C.I.S.P.R. conducted emission levels. On the down side to CCM operation, the flyback transformer will be larger because of the required higher primary inductance.

The advantages to operating in DCM include lower switching losses because the current falls to zero prior to the next switching cycle, and smaller transformer size.

It will ultimately be up to the designer to perform a trade-off study to determine which topology, Boost versus Flyback, Continuous versus Discontinuous Mode of operation will meet all the system performance requirements. But the recent introduction of the NCP1651 allows the system designer one additional option.

For an average current mode flyback topology based PFC converter, determining the transformer parameters (primary inductance and turns ratio) involves several trade-offs. These include peak-to-average current ratio (higher inductance or turns ratio result in lower peak current), switching losses (higher turns ratio leads to higher peak voltage and higher switching losses), CCM vs. DCM operation (lower values of turns ratio or higher values of inductance extend the CCM range) and range of duty cycles over the operational line and load range. ON Semiconductor has designed an Excel-based spreadsheet to help design with the NCP1651 and balance these trade-offs. The design aid is downloadable free-of-charge from our website (www.onsemi.com).

The ideal solution depends on the specific application requirements and the relative priority between factors such as THD performance, cost, size and efficiency. The design aid allows the designer to consider different scenarios and settle on the best solution foe a given application. Following guidelines will help in settling towards the most feasible solution.

1. Turns Ratio Limitations: While higher turns ratio can limit the reflected primary voltage and current, it is constrained by the inherent limitations of the
flyback topology. A turns ratio of higher than 20:1 will result in very high leakage inductance and lead to high leakage spikes on the primary switch. Thus, practical application of this approach is restricted to output voltages 12 V and above.
2. CCM Operation: The NCP1651 is designed to operate in both CCM and DCM modes. However, the CCM operation results in much better THD than the DCM operation. Thus, it is recommended that the circuit be designed to operate in CCM at the specified test condition for harmonics compliance (typically at 230 V , full load). Please keep in mind that at or near zero crossing ($<10 \mathrm{deg}$ angle), it is neither necessary nor feasible to maintain CCM operation.
3. Following key governing equations have been incorporated in the design aid:

PFC Operation

The basic PWM function of the NCP1651 is controlled by a small block of circuitry, which comprises the DC regulation loop and the PFC circuit. These components are shown in Figure 30.
There are three inputs to this loop. They are the fullwave rectified sinewave, the instantaneous input current and the error signal at the FB/SD pin.
The input current is forced to maintain a near unity power factor due to the control of the AC error amplifier. This amplifier uses information from the AC input voltage and the AC input current to control the power switch in a manner that gives good DC regulation as well as excellent power factor.

The reference multiplier sets a reference level for the input fullwave rectified sinewave. One of its inputs is connected to a scaled down fullwave rectified sinewave, and the other receives the error signal which has been converted to a current. The error signal adjusts the level of the fullwave rectified sinewave on the multiplier's output without distorting it. To accomplish this, it is necessary for the bandwidth of the DC error amp to be less than twice the lowest line frequency. Typically it is set at a factor of ten less than the rectified frequency (e.g. for a 60 Hz input, the bandwidth would be 12 Hz).

The key to understanding how the input current is shaped into a high quality sine wave is the operation of the AC error amplifier. The inputs of an operational amplifier operating in its linear range, must be equal. There are several secondary effects, that create small differences between the inverting and non-inverting inputs, but for the purpose of this analysis they can be considered to be equal.

The fullwave rectified sinewave output of the reference multiplier is fed into the non-inverting input of the AC error amplifier. The inverting input to the AC error amplifier receives a signal that is comprised of the input fullwave rectified sinewave (which is not modified by the reference multiplier), and summed with the filtered input current. Since the two inputs to this amplifier will be at the same potential, the complex signal at the non-inverting input will have the same waveshape as the AC reference signal. The AC reference signal ($\mathrm{V}_{\text {ref }}$) is a fullwave rectified sinewave, and the AC input signal $\left(\mathrm{V}_{\text {line }}\right)$ is also a fullwave rectified sinewave, therefore, the AC current signal (I_{in}), must also be a fullwave rectified sinewave. This relationship gives the formula:

$$
V_{\text {ref }}=.75 \cdot V_{\text {ref }}+\left(k \times l_{\text {in }}\right)
$$

The Iin signal has a wide bandwidth, and its instantaneous value will not follow the low frequency fullwave rectified sinewave exactly, however, the output of the AC error amplifier has a low frequency pole that allows the average value of the $.75 \mathrm{~V}_{\text {line }}+\left(\mathrm{k} \mathrm{x}_{\mathrm{in}}\right)$ to follow $\mathrm{V}_{\text {ref }}$. Since the AC error amplifier is a transconductance amplifier, it is followed by an inverting unity gain buffer stage with a low impedance output so that the signal can be summed with the instantaneous input switching current $\left(\mathrm{I}_{\mathrm{in}}\right)$. The output of the buffer is still $\mathrm{V}_{\text {error(ac) }}$.

The difference between $\mathrm{V}_{\text {error }(\mathrm{ac})}$ and the 4.0 volt reference, sets the window that the instantaneous current will modulate in, to determine when to turn the power switch off.

Since the input current has a fundamental frequency that is twice that of the line, the output filter must have poles
lower than the input current to create a reasonable DC waveform. The DC output voltage is compared to a reference voltage by a secondary side error amplifier, and the error signal out of the secondary side amplifier is fed back into the Feedback input through an optocoupler.

The switch is turned on by the oscillator, which makes this a fixed frequency controller. Under normal operation, the switch will remain on until the instantaneous value of $\mathrm{V}_{\text {error(ac) }}$ ' reaches the 4.0 volt reference level, at which time the switch will turn off.

Figure 31. Typical Signals for PFC Circuit

OPERATING DESCRIPTION

DC Reference and Buffer

The internal DC reference is a precision bandgap design with a nominal output voltage of 4.0 volts. It is temperature compensated, and trimmed for a $\pm 1 \%$ tolerance of its nominal voltage, with an overall tolerance of $\pm 2 \%$. To assure maximum stability, this is only used as a reference so there is minimal loading on this source.

The DC reference is fed into a buffer with a gain of 1.625 which creates a 6.5 volt supply. This is used as an internal voltage to power many of the blocks inside of the NCP1651 and is also available for external use. The 6.5 volt reference is designed to be terminated with at $0.1 \mu \mathrm{~F}$ capacitor for stability reasons.

There is no buffer between the internal and external 6.5 volt supply, so care should be used when connecting external loads. A short or overload on this voltage output will inhibit the operation of the chip.

Undervoltage Lockout

An Undervoltage Lockout circuit (UVLO) is provided to assure that the unit does not exhibit undesirable behavior at low V_{CC} levels. It also reduces power consumption to a level that allows rapid charging of the V_{CC} cap.

When the V_{CC} cap is initially charging, the UVLO will hold the unit off, and in a low bias current mode until the V_{CC} voltage reaches a nominal 10.8 volt level. At this point the unit will begin operation, and the UVLO will no longer be active. If the V_{CC} voltage falls to a level that is 1.0 volts below the turn-on point, the UVLO circuit will again become active.

When in the active (shutdown) state, the UVLO circuit removes power from all internal circuitry by shutting off the 6.5 volt supply. The 4.0 volt reference remains active, and the UVLO and Shutdown comparators are also active.

Multiplier

The NCP1651 uses a new proprietary concept for its Reference multiplier. This innovative design allows greatly improved accuracy compared to a conventional linear analog multiplier. The multiplier uses a PWM switching circuit to create a scalable output signal, with a very well defined gain.

One input (A) to the multiplier is a voltage-to-current (V-I) converter. By converting the input voltage into a current, an overall multiplier gain can be accomplished. In addition, there will be no error in the output signal due to the series rectifier.

The other signal (Input P) is input into the PWM comparator. This selects a pulse width for the comparator output. The current signal from the V-I converter is factored by the duty cycle of the PWM comparator, and then filtered by the RC network on the output. This network creates a low pass filter, and removes the high frequency content from the original waveform.

Figure 32. Simplified Multiplier Schematic

The multiplier ramp is generated by the internal oscillator, and is the same signal as is used in the PWM. It will therefore have the same frequency as the power stage.
It is not necessary for Input P (into the PWM comparator) to be a DC signal, low frequency AC signals (relative to the ramp frequency) work well also.
The gain of the multiplier is determined by the current-to-voltage ratio of the V-I converter, the load resistor of the output filter and the peak and valley points of the sawtooth ramp. When the P input signal is at the peak of the ramp waveform, the comparator will allow the A input signal to pass without chopping it at all. This gives an output voltage of the A current multiplied by the output filter resistance. When the P input signal is at the ramp valley voltage, the comparator is held low and no current is passed into the output filter. In between these two extremes, the duty cycle (and therefore, the output signal) is proportional to the level of the P input signal.
The output filter is a parallel RC network. The pole for this network needs to be greater than twice the highest line frequency (120 Hz for a 60 Hz line), and less than the switching frequency. A recommended starting point is a factor of 20 to 50 less than the switching frequency.

The pole is calculated by the formula:

$$
f_{0}=\frac{1}{2 \times \pi \times R \times C}
$$

So, for a 60 Hz line, and a 100 kHz switching frequency, a 2.0 kHz pole is a good starting point. This would be a factor of 50 below the switching frequency, and is still far enough above the 120 Hz rectified line frequency that it won't cause undesirable distortion.

The reference multiplier contains an internal loading resistor, with a nominal value of $25 \mathrm{k} \Omega$. This is because the resistor that converts the A input voltage into a current is internal. Making both of these resistors internal, allows for good accuracy and good temperature performance. Only a capacitor needs to added externally to properly compensate this multiplier. It is not recommended that an external parallel resistor be used at the "Ref Gain" pin, due to tolerance variations of the internal resistor.

There is an offset in the compensation (A-input) to the reference multiplier. It is due to the V-I converter that feeds the input.

The FB/SD signal is buffered by a voltage-to-current converter for the appropriate signal into the multiplier. The schematic for that converter follows.

Figure 33. Multiplier V-I Converter
The output current for this stage is:

$$
\text { imult }=\frac{6\left(\mathrm{~V}_{\mathrm{fb}}-1.5 \mathrm{~V}\right)}{20 \mathrm{k}}
$$

Figure 34. Reference Multiplier Clamp Circuit
There is a 1 k resistor between the AC Ref pin and the AC Error Amplifier for ESD protection. Due to this resistor, the voltage on pin 10 (AC Ref) will exceed 4.5 volts under some conditions, but the maximum voltage at the non-inverting AC Error Amplifier input will be clamped at 4.5 volts.

Feedback/Shutdown

The $\mathrm{FB} / \mathrm{SD}$ pin is a multiple function pin. Its primary function is to port the error signal to the voltage-to-current converter that feeds the reference multiplier. The operating range for the feedback signal is from 1.0 to 4.0 volts. Below an input level of 1.5 volts, the PWM duty cycle is reduced to zero. At 4.0 volts the PWM is operating at its maximum duty cycle.

The signal at this pin is also sensed by an internal comparator that will shutdown the unit if the voltage falls below 0.60 volts. Under normal operating conditions the signal at this input will be 1.5 volts or greater, and the shutdown circuit will be inactive. This circuit is designed such that a 680 Ohm resistor in series with the optocoupler will assure that the converter will go to zero duty cycle when the opto is on full, but will not go low enough to put the unit into its shutdown mode.

The shutdown function can be used for multiple purposes including overvoltage, undervoltage or hot-swap control. An external transistor, open collector or open drain gate, connected to this pin can be used to pull it low, which will inhibit the operation of the chip, and change the operating state to a low power standby mode. An example of a shutdown circuit is shown in Figure 23.

Ramp Compensation

The Ramp Compensation pin allows the amount of ramp compensation to be adjusted for optimum performance. Ramp compensation is necessary in a current mode converter to stabilize the units operation when the duty cycle is greater than 50%.

The amount of compensation required is dependant on several variables, including the boost inductor value, and the desires of the designer. The value should be based on the falling di/dt of the inductor current. For a boost inductor with a variable input voltage, this will vary over the AC input cycle, and with changes in the input line. A di/dt chart is included in the design spreadsheet that is available for the NCP1651.

For optimum load transient performance, the ramp compensation should equal the falling di/dt at 100% duty cycle. For optimum line transient response, it should equal one half of the falling di/dt at 100% duty cycle.

This pin is a buffered output of the oscillator, which provides a voltage equal to the ramp on the oscillator C_{T} pin. A resistor from this pin to ground, programs a current that is transformed via a current mirror to the non-inverting input of the PWM comparator.

The ramp voltage due to the inductor di/dt at the input to the PWM comparator is the current shunt voltage at pin 5 multiplied by 10 , which is the gain of the current amplifier output that feeds the PWM.

Figure 35. Ramp Compensation Circuit
The current mirror is designed with a $1: 1.6$ current ratio. The ramp signal injected can be calculated by the following formula:

$$
\begin{equation*}
V_{\text {ramp }}=\frac{1.6 V_{0 s C_{p k}} 16 \mathrm{k}}{R_{R C}}=\frac{102,400}{R_{R C}} \tag{eq.1}
\end{equation*}
$$

Where:
$\mathrm{V}_{\text {ramp }}=$ Peak injected current signal (4 V)
$\mathrm{R}_{\mathrm{RC}}=$ Ramp compensation resistor $(k \Omega)$

Oscillator

The oscillator generates the sawtooth ramp signal that sets the switching frequency, as well as sets the gain for the multipliers. Both the frequency and the peak-to-peak amplitude are important parameters.
The oscillator uses a current source for charging the capacitor on the C_{T} pin. The charge rate is approximately $200 \mu \mathrm{~A}$ and is trimmed to maintain an accurate, repeatable frequency. Discharge is accomplished by grounding the C_{T} pin with a saturated transistor. A hysteretic comparator monitors that ramp signal and is used to switch between the current source and discharge transistor. While the cap is charging, the comparator has a reference voltage of 4.0 volts. When the ramp reaches that voltage, the comparator switches from the charging circuit to the discharge circuit, and its reference changes from 4.0 to ~ 0.5 volts (overshoot and delays will allow the valley voltage to reach 0 volts).

The relationship between the frequency and timing capacitor is:

$$
C_{T}=47,000 / f
$$

Where C_{T} is in pF and f is in kHz .
It is important not to load the capacitor on this pin, since this could affect the accuracy of the frequency as well as that of the multipliers which use the ramp signal. Any use of this signal should incorporate a high impedance buffer.

Due to the required accuracy of the peak and valley ramp voltages, the NCP1651 is not designed to be synchronized to the frequency of another oscillator.

Average Current Compensation

The input signal to this amplifier is the input fullwave rectified sinewave. The amplifier is a unity gain amplifier, with a voltage divider on the output that attenuates the signal by a factor of 0.75 . This scaled down fullwave rectified sinewave is summed with the low frequency current signal out of the current sense amplifier.
The sum of these signals must equal the signal at the non-inverting input to the AC error amplifier, which is the output of the reference multiplier. Since there is a hard limit of 4.5 volts at the non-inverting input, the sum of the line voltage plus the current cannot exceed this level.

A typical universal input design operates from 85 to 265 vac, which is a range of 3.1:1. The output of the Current Compensation amplifier will change by this amount to allow the maximum current to vary inversely to the line voltage.

AC Error Amplifier

The AC error amplifier is a transconductance amplifier. This amplifier forces a signal which is the sum of the current and input voltage to equal the AC reference signal from the reference multiplier.

Transconductance amplifiers differ from voltage amplifiers in that the output is a high impedance with a controlled voltage-to-current gain. This amplifier has a nominal gain of 100 umhos (or $0.0001 \mathrm{amps} / \mathrm{volt}$). This means that an input voltage differential of 10 mv would cause the output current to change by $1.0 \mu \mathrm{~A}$. Its maximum output current is $30 \mu \mathrm{~A}$.

Current Sense Amplifier

The current sense amplifier is a wide bandwidth amplifier with a differential input. It consists of a differential input stage, a high frequency current mirror (PWM output) and a low frequency current mirror (AC error amp output).

Figure 36. Current Sense Amplifier

The input to the current sense amplifier is a common base configuration. The voltage developed across the current shunt is sensed at the Is+ input. The amplifier input is designed for positive going voltages only; the power stage should resemble the configuration of the application circuit in Figure 38.

Caution should be exercised when designing a filter between the shunt resistor and this input, due to the low impedance of this amplifier. Any series resistance due to a filter, will create an offset of:

$$
\mathrm{V}_{\mathrm{OS}}=50 \mu \mathrm{~A} \times \mathrm{R}_{\text {external }}
$$

which will add a positive offset to the current signal. The effect of this is that the AC error amplifier will try to compensate for the average output current which appears never to go to zero, and cause additional zero crossing distortion.

The voltage across the current shunt resistor is converted into a current (i_{1}), which drives a current mirror. The output of the i_{1} current mirror is a high frequency signal that is a replica of the instantaneous current in the switch. The conversion of the current sense signal to current i_{1} is:

$$
\mathrm{i}_{1}=\mathrm{V} \mathrm{i}_{\mathrm{S}}+/ 3 \mathrm{k}
$$

The PWM output sends that information directly to the PWM input where it is added to the AC error amp signal and the ramp compensation signal.

The Leading Edge Blanking circuit (LEB) interrupts the current signal to the PWM comparator for the first 200 ns of the switching pulse. This blanks out any spike that might occur at turn on, which could cause false triggering of the PWM comparator.

The other output of the i_{1} mirror provides a voltage signal to a buffer amplifier. This signal is the result of i_{1} dropped across an internal $30 \mathrm{k} \Omega$ resistor, and filtered by a capacitor at pin 6 . This signal, when properly filtered, will be the $2 x$ line frequency fullwave rectified sinewave. The filter pole on pin 6 should be far enough below the switching frequency to remove most of the high frequency component, but high enough above the line frequency so as not to cause significant distortion to the input fullwave rectified sinewave waveform.

For a 100 kHz switching frequency and a 60 Hz line frequency, a 10 kHz pole will normally work well. The capacitor at pin 6 can be calculated knowing the desired pole frequency by the equation:

$$
C_{6}=\frac{1}{2 \pi f 30 k}
$$

Where:
$\mathrm{C}_{6}=$ Pin 6 capacitance (nF)
$\mathrm{f}=$ pole frequency (kHz)
or, for a 10 kHz pole, C_{6} would be 0.5 nF .
The gain of the low frequency current buffer is set by the value of the resistor at pin 7. The value of R7 determines the scale factor between the peak current and the average current. The average current will be that of the primary
waveform only, since the secondary current will not conduct across the shunt resistor.

PWM Logic

The PWM and logic circuits are comprised of a PWM comparator, an RS flip-flop (latch) and an OR gate. The latch is Set dominant which means that if both R and S are high the S signal will dominate and Q will be high, which will hold the power switch off.

The NCP1651 uses a voltage mode Pulse Width Modulation scheme based on a fixed frequency oscillator. The oscillator outputs a ramp waveform as well as a pulse which is coincident with the falling edge of the ramp. The pulse is fed into the PWM latch and OR gate that follows. During the pulse, the latch is reset, and the output drive is in its low state.
On the falling edge of the pulse, the output drive goes high and the power switch begins conduction. The instantaneous inductor current is summed with the AC error amplifier voltage and the ramp compensation signal to create a complex waveform that is compared to the 4.0 volt reference signal on the inverting input to the PWM comparator. When the signal at the non-inverting input to the PWM comparator exceeds 4.0 volts, the output of the PWM comparator changes to a high state which drives one of the Set inputs to the latch and turns the power switch off until the next oscillator cycle.
The OR gate that follows the PWM is used to inhibit the drive signal to the power switch. In addition to the oscillator pulse, this gate receives a signal from the shutdown OR gate, which can inhibit operation due to an overtemperature condition, shutdown signal, or insufficient V_{CC}.

Driver

The output driver can be used to directly drive a FET, for low and medium power applications, or a larger driver for high power applications.

It is a complementary MOS, totem pole design, and is capable of sourcing and sinking over 1.5 amps , with typical rise and fall times of 50 ns with a 1.0 nF load. The totem pole output has been optimized to minimize cross conduction current during high speed operation.
Additional internal circuitry has been added to keep the Driver in its low state whenever the Undervoltage Lockout is active. This characteristic eliminates the need for an external gate pulldown resistor.

Shutdown Modes and Logic

Overtemperature A temperature sensor and reference is provided to monitor the junction temperature of the chip. The chip will operate to a nominal temperature of $160^{\circ} \mathrm{C}$ at which time the output of the temperature sensor will change to a low state. This will set the output of the shutdown NAND gate high, which in turn will set the output of the PWM OR gate high, and force the driver into a low state.

There is a hysteresis of $30^{\circ} \mathrm{C}$ on this circuit, which will allow the chip to cool down to $130^{\circ} \mathrm{C}$ before resuming operation.

While in the overtemperature shutdown mode, the startup circuit will be operational and the V_{CC} will cycle between 10.8 and 9.8 volts.

Insufficient V_{CC} If the level of the V_{CC} voltage is not sufficient to maintain operation, the drive of the chip will be inhibited and the divide-by-eight timer will be invoked. This will normally occur when the output is overloaded. Under this condition, the divide-by-eight counter will count for $8 \mathrm{~V}_{\mathrm{CC}}$ cycles. At the end of the eighth cycle the driver will be enabled and the circuit will attempt to start. If the failure has been corrected, the output will come up and the circuit will resume normal operation. If not, another cycle will begin. The waveforms for overload timeout are shown in Figure 3.

Shutdown The NCP1651 has a shutdown circuit that can be used to inhibit the operation of the chip by reducing the $\mathrm{FB} / \mathrm{SD}$ pin voltage to less than 0.6 volts. When a shutdown signal is issued, the output of the shutdown comparator goes low. This immediately ceases the operation of the unit by OR'ing that signal to the output of the PWM logic, and holding the driver in its low state.

The inverted output of the shutdown comparator is fed in to the reset pin of the divide-by-eight counter. The counter reset pin sets its count to seven. As long as the reset pin is low, the counter will remain at seven. When the shutdown signal is removed, the reset pin will go high, and the counter will continue to count to eight. The counter is triggered on the negative edge of the startup enable signal. This means that a shutdown signal that is removed on the upward V_{CC} slope will be in the 7 count for the remaining rise and fall of that V_{CC} cycle and will change to 8 on the next cycle.

This system assures that the unit will not be enabled until the V_{CC} voltage has a full discharge cycle available, and it also insures that the unit will commence operation in less than two V_{CC} cycles. A timing diagram of this mode of operation is shown in Figure 3. The count for the divide-by-eight counter is shown as $7,7,7,8$ which illustrates the operation of the reset function.

If the shutdown signal is terminated before the V_{CC} voltage reaches the lower UVLO limit (i.e. 9.8 volts), the unit will resume operation on the following V_{CC} down slope, and if the shutdown signal is terminated on the V_{CC} upward slope, the unit will resume operation on the second V_{CC} down slope.

AC Reference Buffer

The AC reference buffer converts the voltage generated by the AC error amplifier to be converted into a current to be summed with the ramp compensation signal and the instantaneous current signal.

Figure 37. AC Reference Buffer Schematic
The buffer's transfer function is:

$$
\text { iout }=\left(2.9 \mathrm{~V}-\mathrm{V}_{\mathrm{ac}}(\mathrm{ea})\right) / 6.7 \mathrm{k}
$$

The buffer amplifier, converts the input voltage to a current by creating a current equal to the voltage difference between the AC error amplifier output and the 2.9 volt reference dropped across the $6.7 \mathrm{k} \Omega$ resistor. The bipolar transistor level shifts the voltage and maintains the proper current into the current mirror. The current mirror has a 1:1 ratio and delivers its output current to the PWM input. This current is summed with the currents of the ramp compensation signal and the instantaneous current signal to determine the turn-off point in the switching cycle.

Startup Circuit

The startup circuit serves several functions. In addition to providing the initial charge on the V_{CC} capacitor, it serves as a timer for the startup, overcurrent, and shutdown modes of operation. Due to the nature of this circuit, this chip must be biased using the startup circuit and an auxiliary winding on the power transformer. Attempting to operate this chip off of a fixed voltage supply will cause the chip to latch up in some modes of operation.

A high voltage FET is biased as a current source to provide current for startup power. On the application of input voltage, the high voltage startup circuit is enabled and current is drawn from the rectified $A C$ line to charge the V_{CC} cap.

When the voltage on the V_{CC} cap reaches the turn on point for the UVLO circuit (10.8 volts typical), the startup circuit is disabled, and the PWM circuit is enabled. With the NCP1651 enabled, the bias current increases from its standby level to the operational level. The divide-by-eight counter is preset to the count of 7 , so that on startup the chip will not be operational on the first cycle. The second V_{CC} cycle will be number 8 , and the chip will be allowed to start at this time. In the shutdown mode, the V_{CC} cycle is held in the 7 count state until the shutdown signal is removed. This
allows for a repeatable, fast restart. See Figure 3 for timing diagram.

The unit will remain operational as long as the V_{CC} voltage remains above the UVLO undervoltage trip point. If the V_{CC} voltage is reduced to the undervoltage trip point, operation of the unit will be disabled, the startup circuit will again be enabled, and will charge the V_{CC} cap up to the turn on voltage level. At this point the startup circuit will turn off and the unit will remain in the shutdown mode. This will continue for the next seven cycles. On the eighth cycle, the NPC1651 will again become operational. If the V_{CC} voltage remains above the undervoltage trip point the unit will continue to operate, if not the unit will begin another divide-by-eight cycle.

The purpose of the divide-by-eight counter is to reduce the power dissipation of the chip under overload conditions and allow it to recycle indefinitely without overheating the chip.

It is critical that the output voltage reaches a level that allows the auxiliary voltage to remain above the UVLO turn-off level before the V_{CC} cap has discharged to that level. If the bias voltage generated by the inductor winding fails to exceed the shutdown voltage before the capacitor reduces to the UVLO undervoltage turn-off level, the unit will shut down and go into a divide-by-eight cycle, and will never start. If this occurs, the V_{CC} capacitor value should be increased.

Soft-Start Circuit

The AC error amplifier has been configured such that a low output level will cause the output duty cycle to go to zero. This will have the effect of soft-starting the unit at turn-on, since the output is coupled to ground through a capacitor.

There will be an initial offset of the output voltage due to the output current and the resistor at pin 11. For example, if the output is saturated in the high state at turn on, it will source $50 \mu \mathrm{~A}$. If pin 11 is terminated with a $2.2 \mathrm{k} \Omega$ resistor and a 0.01 F capacitor, the initial step will be:

$$
50 \mu \mathrm{~A} \times 2.2 \mathrm{k}=0.11 \text { volts }
$$

and the rate of rise will be:

$$
50 \mu \mathrm{~A} / 0.01 \mu \mathrm{~F}=5 \mathrm{mV} / \mu \mathrm{s}
$$

or, 560μ s until the output is at 2.8 volts, which corresponds to full duty cycle.

There is also a clamp on pin 8 that will keep the capacitance on that pin discharged to 1.5 volts so that the FB/SD signal will also slew up from a low power level to a high power level. When the unit is in standby mode, the clamp will be enabled. At the same time as the unit is enabled, the clamp will be disabled to allow the feedback signal to control the loop.

An external soft-start circuit can be added, as shown in Figure 24, if additional time is desired.

Basic Specifications

The design of any power converter begins with a basic set of specifications. The following parameters should be known before you begin:

$\mathrm{Po}_{\text {max }}$	(Maximum rated output power)
$\mathrm{Vrms}_{\text {min }}$	(Minimum operational line voltage)
$\mathrm{Vrms}_{\text {max }}$	(Maximum operational line voltage)
$\mathrm{f}_{\text {switch }}$	(Nominal switching frequency)
$\mathrm{V}_{\text {out }}$	(Nominal regulated output voltage)

Most of these parameters will be dictated by system requirements.

Transformer

For an average current mode, fixed frequency PFC converter, there is no magic formula to determine the optimum value of the transformer's primary inductance. There are several trade-offs that should be considered. These include peak current vs. average current, switching losses vs. core losses and range of duty cycles over the operational line and load range. All of these are a function of inductance, line and load. These parameters determine when the converter is operating in the continuous conduction mode and when it is operating in the discontinuous conduction mode.

If you are designing your own transformer, the ON Semiconductor spreadsheet (NCP1651_Design.xls) that is available as a design aid for this part can be of help. Enter various values of inductance as well as the turns ratio and observe the variation in duty cycle and peak current vs. average current.

The transformer's duty cycle is an important parameter. There are two main limitations for the duty cycle. The first is the output voltage reflected back to the primary, which is scaled by the turns ratio. This means that with a $10: 1$ (pri:sec) turns ratio, and a 12 volt output, the power switch will see the input voltage plus 120 volts (10×12 volts) plus leakage inductance spike. This reflected voltage determines the maximum voltage rating of the power switch.

The second, there are practical limits to the turns ratio. Given the flyback converter transfer function, continuous conduction mode,

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{in}} \mathrm{n}(\mathrm{D} / 1-\mathrm{D})
$$

It is evident that there is a direct relationship between duty cycle and the turns ratio. In general, 10:1 is about the maximum, although some transformer manufacturers go as high as $12: 1$ or even $15: 1$. Turns ratios of $20: 1$ and above are not normally practical as they result in very high values of leakage inductance, which creates large spikes on the power switch. They also have a very large reflectovoltage associated with them.

The other option is to contact a transformer manufacturer such as Coiltronics (www.cooperet.com/) or Coilcraft (www.coilcraft.com/). These companies will design and manufacture transformers to your requirements.

Using the available spreadsheet, with the following parameters, a primary inductance of $330 \mu \mathrm{H}$ and a turns ratio of $10: 1$ would be a good choice.

Limits

$\mathrm{Po}_{\text {max }}=100 \mathrm{~W}$
$\mathrm{Vin}_{\text {max }}=265 \mathrm{~V}_{\mathrm{rms}}$
$\mathrm{Vin}_{\text {min }}=85 \mathrm{~V}_{\mathrm{rms}}$
$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$
$L_{P}=330 \mu \mathrm{H}$
$\mathrm{f}_{\text {switch }}=100 \mathrm{kHz}$
$\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{s}}=10$

Figure 39. Switching Current versus Phase Angle

Figure 40. Continuous/Discontinuous and Duty Cycle
If an auxiliary winding is desired to provide a bias supply, it should provide a minimum of 12.1 volts (to exceed the UVLO spec) and a maximum of 18 volts. The auxiliary winding should be connected such that it conducts when the power switch is off. Near the zero crossings of the line frequency, the voltage will have a peak voltage equal to the regulated output voltage divided by the turns ratio. The filter cap on the V_{CC} pin needs to be of sufficient size to hold the voltage up over between the zero crossings.

