

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

USB Positive Overvoltage Protection Controller with Internal PMOS FET and Status FLAG

The NCP360 disconnects systems at its output when wrong VBUS operating conditions are detected at its input. The system is positive overvoltage protected up to ± 20 V.

Thanks to an integrated PMOS FET, no external device is necessary, reducing the system cost and the PCB area of the application board.

The NCP360 is able to instantaneously disconnect the output from the input if the input voltage exceeds the overvoltage threshold (OVLO).

The NCP360 provides a negative going flag (FLAG) output, which alerts the system that a fault has occurred.

In addition, the device has ESD-protected input (15 kV Air) when bypassed with a 1 μF or larger capacitor.

Features

- Very Fast Protection, Up to 20 V, with 25 μA Current Consumption
- On-chip PMOS Transistor
- Overvoltage Lockout (OVLO)
- Undervoltage Lockout (UVLO)
- Alert FLAG Output
- EN Enable Pin
- Thermal Shutdown
- Compliance to IEC61000-4-2 (Level 4)
 8 kV (Contact)
 15 kV (Air)
- ESD Ratings: Machine Model = B Human Body Model = 2
- 6 Lead UDFN 2x2 mm Package
- 5 Lead TSOP 3x3 mm Package
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

1

• These are Pb-Free Devices

Applications

- USB Devices
- Mobile Phones
- Peripheral
- Personal Digital Applications
- MP3 Players

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

UDFN6 MU SUFFIX CASE 517AB

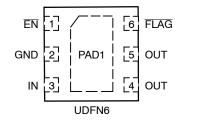
M = Date Code= Pb-Free Package

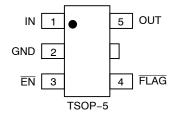
TSOP-5 SN SUFFIX CASE 483

A = Assembly Location

Y = Year

W = Work Week


= Pb-Free Package


(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 11 of this data sheet.

PIN CONNECTIONS

(Top Views)

PIN FUNCTION DESCRIPTION (UDFN6 Package)

Pin No.	Name	Туре	Description	
1	ĒN	INPUT	Enable Pin. The device enters in shutdown mode when this pin is tied to a high level. In this case the output is disconnected from the input. To allow normal functionality, the $\overline{\text{EN}}$ pin shall be connected to GND or to a I/O pin. This pin does not have an impact on the fault detection.	
2	GND	POWER	Ground	
3	IN	POWER	Input Voltage Pin. This pin is connected to the VBUS. A 1 μF low ESR ceramic capacitor, or larger, must be connected between this pin and GND.	
4, 5	OUT	OUTPUT	Output Voltage Pin. The output is disconnected from the VBUS power supply when the input voltage is above OVLO threshold or below UVLO threshold. A 1 μ F capacitor must be connected to these pins. The two OUT pins must be hardwired to common supply.	
6	FLAG	OUTPUT	Fault Indication Pin. This pin allows an external system to detect a fault on VBUS pin. The FLAG pin goes low when input voltage exceeds OVLO threshold. Since the FLAG pin is open drain functionality, an external pull up resistor to V _{CC} must be added.	
-	PAD1	POWER	Exposed Pad. Can be connected to GND or isolated plane. Must be used to thermal dissipation.	

PIN FUNCTION DESCRIPTION (TSOP-5 Package)

Pin No.	Name	Туре	Description
1	IN	POWER	Input Voltage Pin. This pin is connected to the VBUS. A 1 μF low ESR ceramic capacitor, or larger, must be connected between this pin and GND.
2	GND	POWER	Ground
3	ĒN	INPUT	Enable Pin. The device enters in shutdown mode when this pin is tied to a high level. In this case the output is disconnected from the input. To allow normal functionality, the $\overline{\text{EN}}$ pin shall be connected to GND or to a I/O pin. This pin does not have an impact on the fault detection.
4	FLAG	OUTPUT	Fault Indication Pin. This pin allows an external system to detect a fault on VBUS pin. The $\overline{\text{FLAG}}$ pin goes low when input voltage exceeds OVLO threshold. Since the $\overline{\text{FLAG}}$ pin is open drain functionality, an external pull up resistor to V_{CC} must be added.
5	OUT	OUTPUT	Output Voltage Pin. The output is disconnected from the VBUS power supply when the input voltage is above OVLO threshold or below UVLO threshold. A 1 μ F capacitor must be connected to this pin.

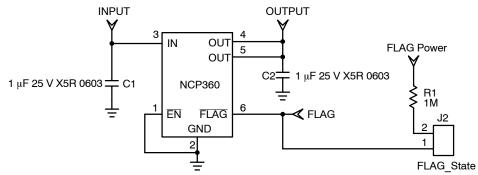


Figure 1. Typical Application Circuit (UDFN Pinout)

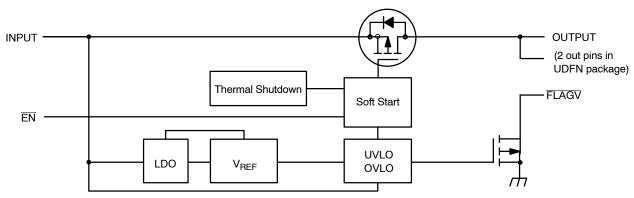


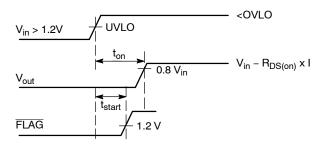
Figure 2. Functional Block Diagram

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Minimum Voltage (IN to GND)	Vmin _{in}	-0.3	V
Minimum Voltage (All others to GND)	Vmin	-0.3	V
Maximum Voltage (IN to GND)	Vmax _{in}	21	V
Maximum Voltage (All others to GND)	Vmax	7.0	V
Maximum Current from Vin to Vout (PMOS) (Note 1)	Imax	600	mA
Thermal Resistance, Junction-to-Air (Note 2) TSOP-5 UDFN	$R_{ hetaJA}$	305 260	°C/W
Operating Ambient Temperature Range	T _A	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Operating Temperature	T_J	150	°C
ESD Withstand Voltage (IEC 61000–4–2) Human Body Model (HBM), Model = 2 (Note 3) Machine Model (MM) Model = B (Note 4)	Vesd	15 Air, 8.0 Contact 2000 200	kV V V
Moisture Sensitivity	MSL	Level 1	-

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Uith minimum PCB area. By decreasing $R_{\theta JA}$, the current capability increases. See PCB recommendation page 9. $R_{\theta JA}$ is highly dependent on the PCB heat sink area (connected to PAD1, UDFN). See PCB Recommendations. Human Body Model, 100 pF discharged through a 1.5 kΩ resistor following specification JESD22/A114. Machine Model, 200 pF discharged through all pins following specification JESD22/A115.


- 5. Compliant with JEDEC Latch-up Test, up to maximum voltage range.

ELECTRICAL CHARACTERISTICS

(Min/Max limits values ($-40^{\circ}C < T_A < +85^{\circ}C$) and V_{in} = +5.0 V. Typical values are T_A = +25°C, unless otherwise noted.)

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{in}		1.2		20	V
Undervoltage Lockout Threshold	UVLO	V _{in} falls below UVLO threshold	2.85	3.0	3.15	V
Undervoltage Lockout Hysteresis	UVLO _{hyst}	MU/SN, SNAE SNAF, SNAI	50 30	70 50	90 70	mV
Overvoltage Lockout Threshold	OVLO	V _{in} rises above OVLO threshold MU/SN SNAE SNAF SNAI	5.43 6.0 6.75 7.0	5.675 6.25 7.07 7.2	5.9 6.5 7.4 7.4	V
Overvoltage Lockout Hysteresis	OVLO _{hyst}		50	100	125	mV
V _{in} versus V _{out} Dopout	V_{drop}	V _{in} = 5 V, I charge = 500 mA		105	200	mV
Supply Quiescent Current	ldd	No Load, V _{in} = 5.25 V		24	35	μΑ
OVLO Supply Current	Idd _{ovlo}	V _{in} = 7 V MU/SN, SNAE V _{in} = 8 V SNAF, SNAI		50 50	85 85	μΑ
Output Off State Current	I _{std}	V _{in} = 5.25 V, EN = 1.2 V		26	37	μΑ
FLAG Output Low Voltage	Vol _{flag}	V _{in} > OVLO, Sink 1 mA on FLAG pin			400	mV
FLAG Leakage Current	FLAG _{leak}	FLAG level = 5 V		5.0		nA
EN Voltage High	V _{ih}	V _{in} from 3.3 V to 5.25 V	1.2			V
EN Voltage Low	V _{il}	V _{in} from 3.3 V to 5.25 V			0.4	V
EN Leakage Current	EN _{leak}	EN = 5.5 V or GND		170		nA
TIMINGS			•		•	
Start Up Delay	t _{on}	From V_{in} : (0 to (OVLO – 300 mV) < V_{in} < OVLO) to V_{out} = 0.8x V_{in} , Rise time<4 μ s See Figures 3&9		4.0	15	ms
FLAG going up Delay	t _{start}	From V _{in} > UVLO to FLAG = 1.2 V, See Fig 3 & 10		3.0		μs
Output Turn Off Time	t _{off}	From V_{in} > OVLO to $V_{out} \le 0.3$ V, See Fig 4 & 11 V_{in} increasing from normal operation to >OVLO at $1V/\mu s$. No output capacitor.		0.8	1.5	μs
		From V_{in} > OVLO to $\overline{FLAG} \le 0.4$ V, See Fig 4 & 12 V_{in} increasing from normal operation to >OVLO at $1V/\mu s$		1.0	2.0	μs
Disable Time	t _{dis}	From $\overline{\text{EN}}$ 0.4 to 1.2V to $V_{out} \le$ 0.3V, See Fig 5 & 13 V_{in} = 4.75 V. No output capacitor.		2.0		μs
Thermal Shutdown Temperature	T _{sd}			150		°C
Thermal Shutdown Hysteresis	T _{sdhyst}			30		°C

NOTE: Thermal Shutdown parameter has been fully characterized and guaranteed by design.

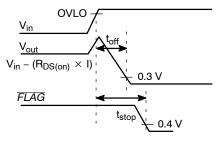


Figure 3. Start Up Sequence

Figure 4. Shutdown on Over Voltage Detection

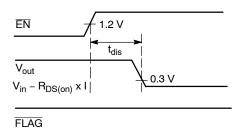


Figure 5. Disable on $\overline{EN} = 1$

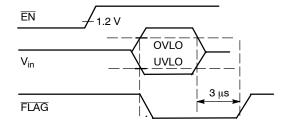


Figure 6. $\overline{\text{FLAG}}$ Response with $\overline{\text{EN}} = 1$

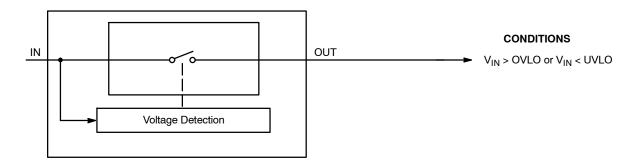


Figure 7.

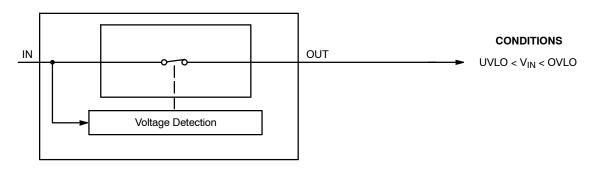


Figure 8.

TYPICAL OPERATING CHARACTERISTICS

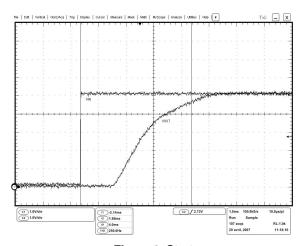


Figure 9. Startup V_{in} = Ch1, V_{out} = Ch3

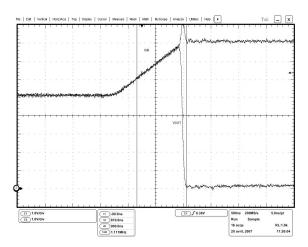


Figure 11. Output Turn Off Time V_{in} = Ch1, V_{out} = Ch2

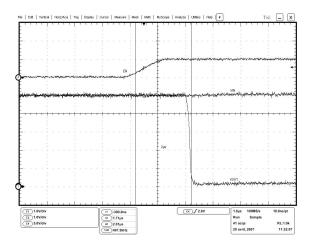


Figure 13. Disable Time EN = Ch1, V_{out} = Ch2, FLAG = Ch3

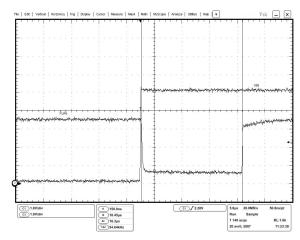


Figure 10. FLAG Going Up Delay V_{in} = Ch1, FLAG = Ch3

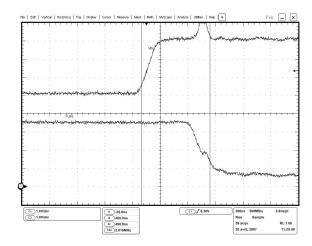


Figure 12. Alert Delay V_{out} = Ch1, FLAG = Ch3

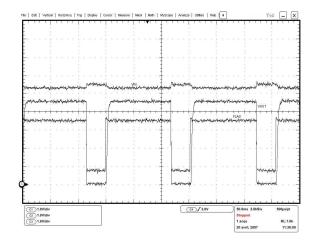
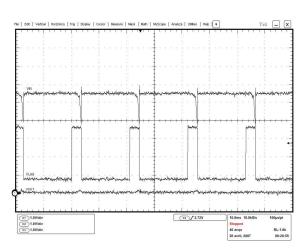
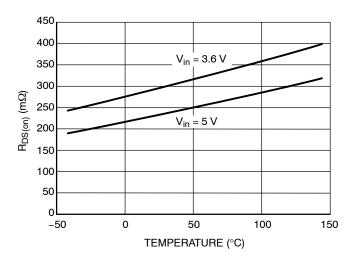




Figure 14. Thermal Shutdown V_{in} = Ch1, V_{out} = Ch2, FLAG = Ch3

TYPICAL OPERATING CHARACTERISTICS

Figure 15. Direct Output Short Circuit

Figure 16. $R_{DS(on)}$ vs. Temperature (Load = 500 mA)

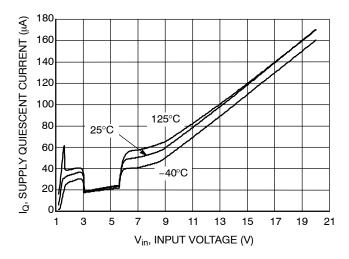


Figure 17. Supply Quiescent Current vs. V_{in}

In Operation

NCP360 provides overvoltage protection for positive voltage, up to 20 V. A PMOS FET protects the systems (i.e.: VBUS) connected on the V_{out} pin, against positive over-voltage. The Output follows the VBUS level until OVLO threshold is overtaken.

Undervoltage Lockout (UVLO)

To ensure proper operation under any conditions, the device has a built–in undervoltage lock out (UVLO) circuit. During V_{in} positive going slope, the output remains disconnected from input until V_{in} voltage is above 3.2 V nominal. The \overline{FLAGV} output is pulled to low as long as V_{in} does not reach UVLO threshold. This circuit has a UVLO hysteresis to provide noise immunity to transient condition.

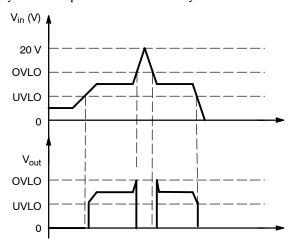


Figure 18. Output Characteristic vs. Vin

Overvoltage Lockout (OVLO)

To protect connected systems on V_{out} pin from overvoltage, the device has a built–in overvoltage lock out (OVLO) circuit. During overvoltage condition, the output remains disabled until the input voltage exceeds OVLO – Hysteresis.

 \overline{FLAG} output is tied to low until V_{in} is higher than OVLO. This circuit has a OVLO hysteresis to provide noise immunity to transient conditions.

FLAG Output

NCP360 provides a FLAG output, which alerts external systems that a fault has occurred.

This pin is tied to low as soon the OVLO threshold is exceeded When V_{in} level recovers normal condition, \overline{FLAG} is held high. The pin is an open drain output, thus a pull up resistor (typically 1 M $\Omega-$ Minimum 10 k $\Omega)$ must be provided to $V_{battery\cdot}$ \overline{FLAG} pin is an open drain output.

EN Input

To enable normal operation, the \overline{EN} pin shall be forced to low or connected to ground. A high level on the pin disconnects OUT pin from IN pin. \overline{EN} does not overdrive an OVLO or UVLO fault.

Internal PMOS FET

NCP360 includes an internal PMOS FET to protect the systems, connected on OUT pin, from positive overvoltage. Regarding electrical characteristics, the R_{DSon} , during normal operation, will create low losses on V_{out} pin, characterized by V_{in} versus V_{out} dropout. (See Figure 16).

ESD Tests

NCP360 fully support the IEC61000–4–2, level 4 (Input pin, 1 μ F mounted on board).

That means, in Air condition, V_{in} has a $\pm 15~kV$ ESD protected input. In Contact condition, V_{in} has $\pm 8~kV$ ESD protected input.

Please refer to Fig 19 to see the IEC 61000-4-2 electrostatic discharge waveform.

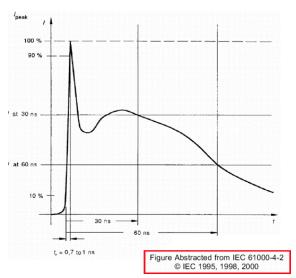


Figure 19.

PCB Recommendations

The NCP360 integrates a 500 mA rated PMOS FET, and the PCB rules must be respected to properly evacuate the heat out of the silicon. The UDFN PAD1 must be connected to ground plane to increase the heat transfer if necessary from an application standpoint. Of course, in any case, this pad shall be not connected to any other potential.

By increasing PCB area, the $R_{\theta JA}$ of the package can be decreased, allowing higher charge current to fill the battery.

Taking into account that internal bondings (wires between package and silicon) can handle up to 1 A (higher than thermal capability), the following calculation shows two different example of current capability, depending on PCB area:

- With 305°C/W (without PCB area), allowing DC current is 500 mA
- With 260°C/W (200 mm²), the charge DC current allows with a 85°C ambient temperature is: $I = \sqrt{(T_J T_A)/(R_{\theta JA} \times R_{DSON})}$ I = 625 mA

In every case, we recommend to make thermal measurement on final application board to make sure of the final Thermal Resistance.

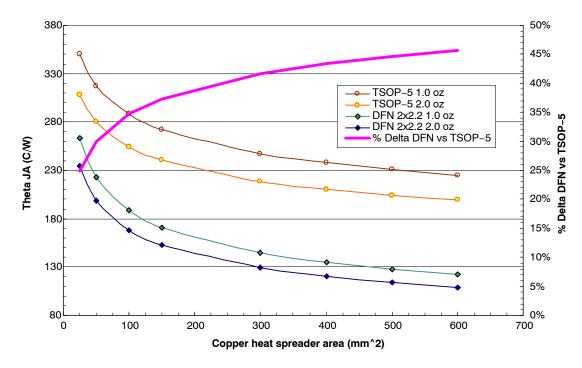


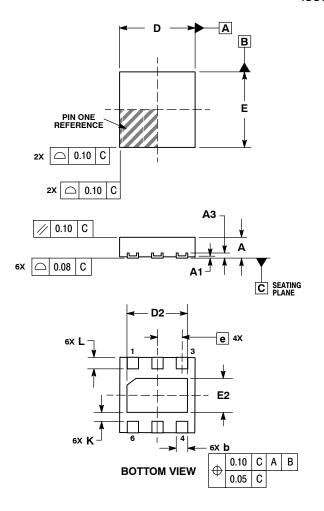
Figure 20. Thermal Resistance of UDFN 2x2 and TSOP Packages as a Function of PCB Area and Thickness

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NCP360MUTBG	ZD	UDFN6 (Pb-Free)	3000 / Tape & Reel
NCP360MUTXG	ZD	UDFN6 (Pb-Free)	10000 / Tape & Reel
NCP360SNT1G	SYA	TSOP-5 (Pb-Free)	3000 / Tape & Reel
NCP360SNAET1G	AAP	TSOP-5 (Pb-Free)	3000 / Tape & Reel
NCP360SNAFT1G	AA5	TSOP-5 (Pb-Free)	3000 / Tape & Reel
NCP360SNAIT1G	ACE	TSOP-5 (Pb-Free)	3000 / Tape & Reel
NCV360SNT1G*	VUE	TSOP-5 (Pb-Free)	3000 / Tape & Reel
NCV360SNAET1G*	VEY	TSOP-5 (Pb-Free)	3000 / Tape & Reel
NCV360SNAFT1G*	VUM	TSOP-5 (Pb-Free)	3000 / Tape & Reel

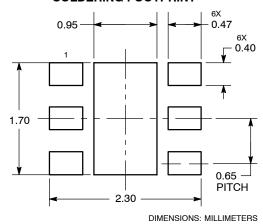
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements

SELECTION GUIDE


The NCP360 can be available in several undervoltage and overvoltage thresholds versions. Part number is designated as follows:

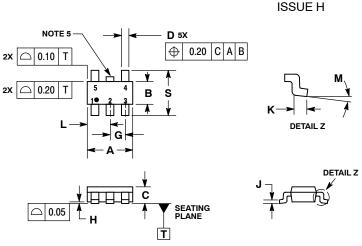
Code	Contents	
а	Package	
	MU = UDFN	
	SN = TSOP5	
b	UVLO Typical Threshold	
	b: - = 3.0 V	
	b: A = 3.0 V	
С	OVLO Typical Threshold	
	c: - = 5.675 V	
	c: E = 6.25 V	
	c: F = 7.07 V	
	c: I = 7.2 V	
d	Tape & Reel Type (parts per reel)	
	d: 1 = 3000	
	d: B = 3000	
	d: X = 10000	

PACKAGE DIMENSIONS


UDFN6 2x2, 0.65P CASE 517AB **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

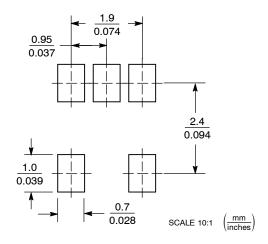
	MILLIMETERS		
DIM	MIN	MAX	
Α	0.45	0.55	
A1	0.00	0.05	
A3	0.127	7 REF	
b	0.25	0.35	
D	2.00	BSC	
D2	1.50	1.70	
E	2.00 BSC		
E2	0.80	1.00	
е	0.65	BSC	
K	0.20		
L	0.25	0.35	


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSOP-5 CASE 483-02



NOTES:

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES
 LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS
- OF BASE MATERIAL.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD FLASH, PROTRUSIONS, OR GATE BURRS
- OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α	3.00	BSC	
В	1.50	BSC	
O	0.90	1.10	
D	0.25	0.50	
G	0.95	BSC	
Н	0.01	0.10	
J	0.10	0.26	
K	0.20	0.60	
L	1.25	1.55	
M	0 °	10 °	
S	2.50	3.00	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative