imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

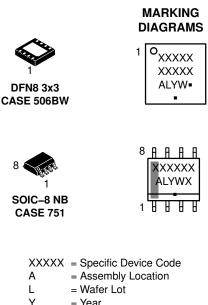
Fixed Current-Limiting Power-Distribution Switches

The NCP382 is a single input dual outputs high side power-distribution switch designed for applications where heavy capacitive loads and short-circuits are likely to be encountered. The device includes an integrated 80 mQ, P-channel MOSFET. The device limits the output current to a desired level by switching into a constant-current mode when the output load exceeds the current-limit threshold or a short is present. The current-limit threshold is internally fixed. The power-switches rise and fall times are controlled to minimize current ringing during switching.

The FLAG logic output asserts low during overcurrent or overtemperature conditions. The switch is controlled by a logic enable input active high or low.

Features

- 2.5 V 5.5 V Operating Range
- 80 mΩ High–Side MOSFET
- Current Limit: Fixed 500 mA, 1 A, 1.5 A and 2 A
- Undervoltage Lock–Out (UVLO)
- Soft-Start Prevents Inrush Current
- Thermal Protection
- Soft Turn–Off
- Enable Active High or Low (EN or \overline{EN})
- Compliance to IEC61000-4-2 (Level 4)
 - ◆ 8.0 kV (Contact)
 - 15 kV (Air)
- UL Listed for SOIC package (NCP382xDxxxx) File No. E343275
- IEC60950 Edition 2 for SOIC package (NCP382xDxxxx) Amendments 1 & 2 Certified (CB Scheme)
- These are Pb–Free Devices


Typical Applications

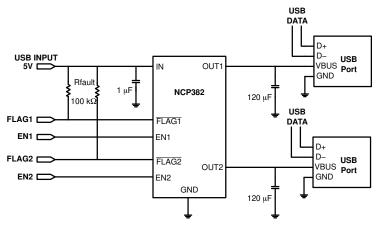
- Laptops
- USB Ports/Hubs
- TVs

ON Semiconductor®

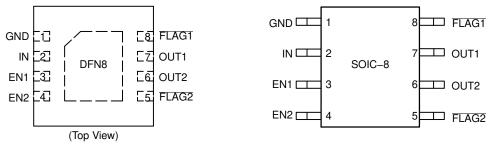
www.onsemi.com

= Year

W


- = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location)


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

1

PIN FUNCTION DESCRIPTION

Pin Name	Туре	Description
EN1	I	Enable 1 input, logic low/high (i.e. EN or EN) turns on power switch.
EN2	I	Enable 2 input, logic low/high (i.e. EN or EN) turns on power switch.
GND	Р	Ground connection.
IN	Р	Power–switch input voltage; connect a 1 μF or greater ceramic capacitor from IN to GND as close as possible to the IC.
FLAG1	0	Active–low open–drain output 1, asserted during overcurrent or overtemperature conditions. Connect a 10 k Ω or greater resistor pull–up, otherwise leave unconnected.
FLAG2	0	Active–low open–drain output 2, asserted during overcurrent or overtemperature conditions. Connect a 10 k Ω or greater resistor pull–up, otherwise leave unconnected.
OUT1	0	Power–switch output1; connect a 1 μ F ceramic capacitor from OUT1 to GND, as close as possible to the IC. This minimum value is recommended for USB requirement in terms of load transient response and strong short circuits.
OUT2	0	Power–switch output2; connect a 1 μ F ceramic capacitor from OUT2 to GND, as close as possible to the IC. This minimum value is recommended for USB requirement in terms of load transient response and strong short circuits.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
From IN to OUT1, From IN to OUT2 Supply Voltage (Note 1)	V _{IN} , V _{OUT1} , V _{OUT2}	-7.0 to +7.0	V
IN, OUT1,OUT2, EN1, EN2, FLAG1, FLAG2 (Note 1)	V _{IN} , V _{OUT1} , V _{OUT2} , V _{EN1} , V _{EN2} , V _{FLAG1} , V _{FLAG2}	-0.3 to +7.0	V
FLAG1, FLAG2 sink current	ISINK	1.0	mA
ESD Withstand Voltage (IEC 61000–4–2) (output only, when bypassed with 1.0 μF capacitor minimum)	ESD IEC	15 Air, 8 contact	kV
Human Body Model (HBM) ESD Rating are (Note 2)	ESD HBM	2000	V
Machine Model (MM) ESD Rating are (Note 2)	ESD MM	200	V
Latch-up protection (Note 3) – Pins IN, OUT1, OUT2, FLAG1, FLAG2 – EN1, EN2	LU	100	mA
Maximum Junction Temperature (Note 4)	ТJ	-40 to + TSD	°C
Storage Temperature Range	T _{STG}	-40 to + 150	°C
Moisture Sensitivity (Note 5)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. According to JEDEC standard JESD22-A108.

 This device series contains ESD protection and passes the following tests: Human Body Model (HBM) +/-2.0 kV per JEDEC standard: JESD22-A114 for all pins. Machine Model (MM) +/-200 V per JEDEC standard: JESD22-A115 for all pins.

Latch up Current Maximum Rating: ± 100 mA per JEDEC standard: JESD78 class II.
A thermal shutdown protection avoids irreversible damage on the device due to power dissipation.

5. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.

OPERATING CONDITIONS

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{IN}	Operational Power Supply			2.5		5.5	V
V _{ENX}	Enable Voltage			0		5.5	
T _A	Ambient Temperature Range			-40	25	+85	°C
I _{SINK}	FLAG sink current					1	mA
C _{IN}	Decoupling input capacitor						μF
C _{OUTX}	Decoupling output capacitor		120			μF	
$R_{\theta JA}$	Thermal Resistance Junction-to-Air	DFN-8	DFN-8 package (Notes 6 and 7) SOIC-8 package (Notes 6 and 7)		140		°C/W
		SOIC-8			210		°C/W
ТJ	Junction Temperature Range			-40	25	+125	°C
I _{OUTX}	Recommended Maximum DC	DFN-8 package				2	А
	current		SOIC-8 package			1.5	А
PD	Power Dissipation Rating (Note 8)	$T_A \le 25^\circ C$	DFN-8 package	850			mW
			SOIC-8 package	570			mW
		T _A = 85°C	DFN–8 package	428			mW
			SOIC-8 package	285			mW

6. A thermal shutdown protection avoids irreversible damage on the device due to power dissipation.

The R_{0JA} is dependent of the PCB heat dissipation. Announced thermal resistance is the unless PCB dissipation and can be improve with 7. final PCB layout.

Р

8. The maximum power dissipation (P_D) is given by the following formula:

$$_{\rm D} = \frac{\Gamma_{\rm JMAX} - \Gamma_{\rm A}}{R_{\rm \theta JA}}$$

ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A between -40°C to +85°C and T_J up to + 125°C for V_{IN} between 2.5 V to 5.5 V (Unless otherwise noted). Typical values are referenced to $T_A = +25^{\circ}C$ and $V_{IN} = 5$ V.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
POWER S	WITCH						
R _{DS(on)}	Static drain-source on-state resistance	$T_{J} = 25^{\circ}C, V_{IN} = 3.6 V \text{ to } 5 V$			80	110	mΩ
- (-)	(SOIC-8 Package)	V _{IN} = 5 V	–40°C < T _J < 125°C			140	
R _{DS(on)}	Static drain-source on-state resistance (DFN8 Package)	T _J = 25	^o C, V _{IN} = 3.6 V to 5 V		80	95	mΩ
		V _{IN} = 5 V	–40°C < T _J < 125°C			100	
T _R	Output rise time	V _{IN} = 5 V	$C_{LOAD} = 1 \mu\text{F},$	0.3	1.0	1.5	ms
_	-	V _{IN} = 2.5 V	$R_{LOAD} = 100 \Omega \text{ (Note 9)}$	0.2	0.65	1.0	-
Τ _F	Output fall time	$V_{IN} = 5 V$		0.1		0.5	-
		V _{IN} = 2.5 V		0.1		0.5	
	High-level input voltage	1		1.2		<u> </u>	V
V _{IH} V _{IL}	Low-level input voltage			1.2		0.4	V
vi∟ I _{ENx}	Input current	Ven	$= 0 \text{ V}, \text{ V}_{\overline{\text{ENx}}} = 5 \text{ V}$	-0.5		0.4	ν μA
T _{ON}	Turn on time		F, $R_{LOAD} = 100 \Omega$ (Note 9)	1.0		3.0	ms
T _{OFF}	Turn off time	ULOAD = 1 μ	$1100 \pm 100 \pm 1000 \pm 1000\pm 1000\pm 1000\pm 1000\pm 1000\pm 1000\pm 1000\pm 1000\pm 1000\pm 10$	1.0		3.0	ms
						0.0	
I _{OCP}	Current-limit threshold (Maximum DC	VIN	= 5 V, Fixed 0.5 A	0.5	0.6	0.7	А
-006	output current IOUTX delivered to load)		= 5 V, Fixed 1.0 A	1.0	1.2	1.4	
		$V_{IN} = 5$ V, Fixed 1.5 A		1.5	1.75	2.0	1
			V _{IN} = 5 V, Fixed 2 A			2.5	
T _{DET}	Response time to short circuit	V _{IN} = 5 V			2.0		μs
T _{REG}	Regulation time			2.0	3.0	4.0	ms
T _{OCP}	Over current protection time			14	20	26	ms
UNDERVO	DLTAGE LOCKOUT						
V _{UVLO}	IN pin low-level input voltage		V _{IN} rising	2.0	2.35	2.5	V
V _{HYST}	IN pin hysteresis	$T_J = 25^{\circ}C$		25	40	60	mV
T _{RUVLO}	Re-arming Time	V _{IN} rising		5.0	10	15	ms
SUPPLY C	CURRENT						
I _{INOFF}	Low-level output supply current	V _{IN} = 5 V, No V _{ENX}	load on OUTX, Device OFF = 0 V or V _{ENX} = 5 V		2.0	3.0	μA
I _{INON}	High-level output supply current	0.5 A	$\begin{array}{l} T_J = 25^\circ C \\ T_J = 85^\circ C \end{array}$			95 100	μΑ
		1 and 1.5 A	$\begin{array}{l} T_J = 25^\circ C \\ T_J = 85^\circ C \end{array}$			115 125	
		2 A	$\begin{array}{l} T_J=25^\circ C\\ T_J=85^\circ C \end{array}$			130 140	
I _{REV}	Reverse leakage current	$V_{OUTX} = 5 V,$ $V_{IN} = 0 V$	$T_J = 25^{\circ}C$		1.0	2.0	μΑ
FLAG PIN				•			•
V _{OL}	FLAGX output low voltage		FLAGX = 1 mA			400	mV
I _{LEAK}	Off-state leakage	$V_{FLAGX} = 5 V$			0.02	1	μΑ
T _{FLG}	FLAGX deglitch	FLAGX de-assertion time due to overcurrent		4	6	9	ms
T _{FOCP}	FLAGX deglitch	FLAGX assertion due to overcurrent		6	8	12	ms
THERMAL	SHUTDOWN						
T _{SD}	Thermal shutdown threshold				140		°C
T _{SDOCP}	Thermal regulation threshold	1			125		°C
T _{RSD}	Thermal regulation rearming threshold			1	115		°C

Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUTX pin with respect to the ground.
DFN package only.
Guaranteed by characterization.

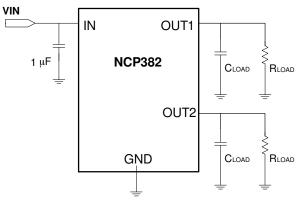
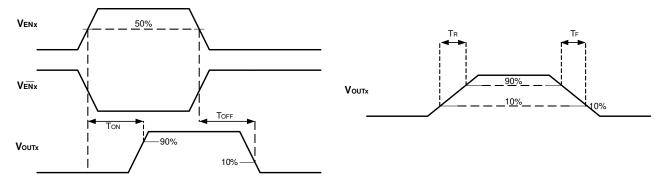



Figure 3. Test Configuration

BLOCK DIAGRAM

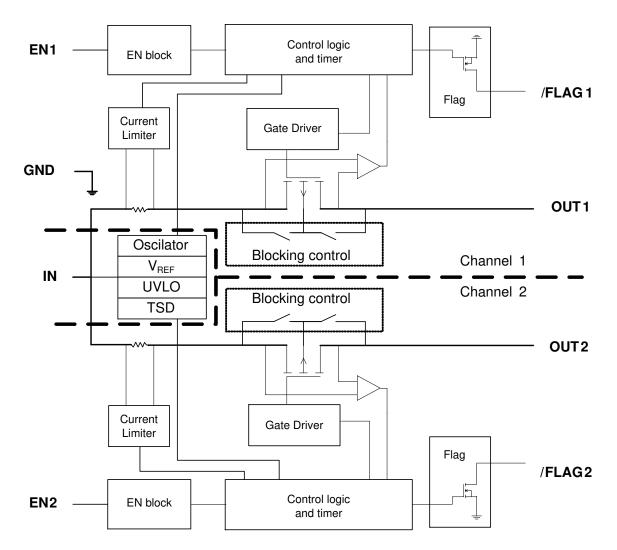


Figure 5. Block Diagram

FUNCTIONAL DESCRIPTION

Overview

The NCP382 is a dual high side power distribution switches designed to protect the input supply voltage in case of heavy capacitive loads, short circuit or over current. In addition, the high side MOSFETs are turned off during undervoltage or thermal shutdown condition. Thanks to the soft start circuitry, NCP382 is able to limit large current and voltage surges.

Overcurrent Protection

NCP382 switches into a constant current regulation mode when the output current is above the I_{OCP} threshold. Depending on the load, the output voltage is decreased accordingly.

 In case of hot plug with heavy capacitive load, the output voltage is brought down to the capacitor voltage. The NCP382 will limit the current to the I_{OCP} threshold value until the charge of the capacitor is completed.

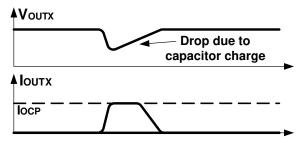


Figure 6. Heavy Capacitive Load

In case of overload, the current is limited to the I_{OCP} value and the voltage value is reduced according to the load by the following relation:

$$V_{OUTX} = R_{LOAD2} \times I_{OCP}$$
 (eq. 1)

VOUTX

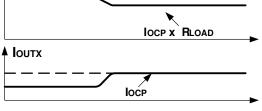
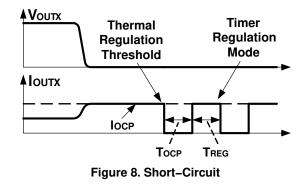



Figure 7. Overload

- In case of short circuit or huge load, the current is limited to the I_{OCP} value within T_{DET} time until the short condition is removed. If the output remains shorted or tied to a very low voltage, the junction temperature of the chip exceeds T_{SDOCP} value and the device enters in thermal shutdown (MOSFET is turned–off).

Then, the device enters in timer regulation mode, described in 2 phases:

- Off-phase: Power MOSFET is off during T_{OCP} to allow the die temperature to drop.
- On-phase: regulation current mode during T_{REG}. The current is regulated to the I_{OCP} level.

The timer regulation mode allows the device to handle high thermal dissipation (in case of short circuit for example) within temperature operating condition.

NCP382 stays in on-phase/off-phase loop until the over current condition is removed or enable pin is toggled.

Remark: other regulation modes can be available for different applications. Please contact our On Semiconductor representative for availability.

FLAG Indicator

The \overline{FLAG} pin is an open-drain MOSFET asserted low during overcurrent or overtemperature conditions. When an overcurrent fault is detected on the power path, \overline{FLAG} pin is asserted low at the end of the associate deglitch time (TFOCP). Thanks to this feature, the \overline{FLAG} pin is not tied low during the charge of a heavy capacitive load or a voltage transient on output. The \overline{FLAG} pin remains low until the fault is removed. Then, the \overline{FLAG} pin goes high at the end of T_{FGL}

Undervoltage Lock-out

Thanks to a built–in under voltage lockout (UVLO) circuitry, the output remains disconnected from input until V_{IN} voltage is above V_{UVLO} . This circuit has a V_{HYST} hysteresis witch provides noise immunity to transient condition.

Thermal Sense

Thermal shutdown turns off the power MOSFET if the die temperature exceeds T_{SD} . A built-in hysteresis prevents the part from turning on until the die temperature cools at TRSD.

Enable Input

Enable pin must be driven by a logic signal (CMOS or TTL compatible) or connected to the GND or VIN. A logic low on $\overline{\text{ENX}}$ or high on ENX turns—on the device. A logic high on $\overline{\text{ENX}}$ or low on ENX turns off device and reduces the current consumption down to I_{INOFF}.

Blocking Control

The blocking control circuitry switches the bulk of the power MOS. When the part is off, the body diode limits the

APPLICATION INFORMATION

Power Dissipation

The junction temperature of the device depends on different contributing factors such as board layout, ambient temperature, device environment, etc... Yet, the main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

$$\mathsf{P}_{\mathsf{D}} = \mathsf{R}_{\mathsf{DS}(\mathsf{on})} \times \left(\left(\mathsf{I}_{\mathsf{OUT1}} \right)^2 + \left(\mathsf{I}_{\mathsf{OUT2}} \right)^2 \right) \quad (\mathsf{eq. 2})$$

P _D	= Power dissipation (W)					
R _{DS(on)}	= Power MOSFET on resist	tance (Ω)				
I _{OUTx}	= Output current in channel	= Output current in channel X (A)				
	$T_J = P_D \times R_{\theta JA} + T_A$	(eq. 3)				

TJ	= Junction temperature (°C)
$R_{\theta JA}$	= Package thermal resistance (°C/W)
T _A	= Ambient temperature (°C)

leakage current I_{REV} from OUTX to IN. In this mode, anode of the body diode is connected to IN pin and cathode is connected to OUTX pin. In operating condition, anode of the body diode is connected to OUTX pin and cathode is connected to IN pin preventing the discharge of the power supply.

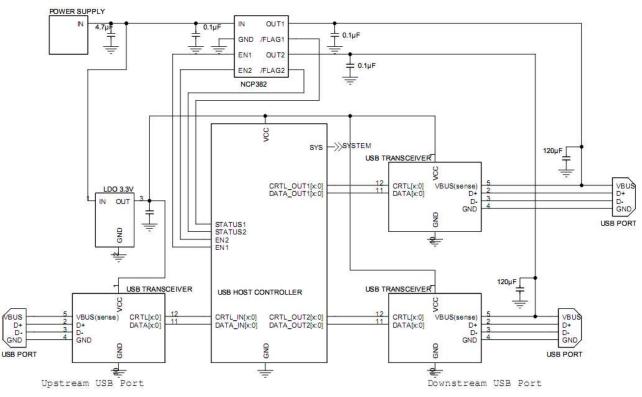
Power dissipation in regulation mode can be calculated by taking into account the drop V_{IN} – V_{OUTX} link to the load by the following relation:

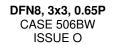
$$P_{D} = \left(\left(V_{IN} - R_{LOAD1} \times I_{OCP} \right) + \left(V_{IN} - R_{LOAD2} \times I_{OCP} \right) \right) \\ \times I_{OCP}$$
(eq. 4)

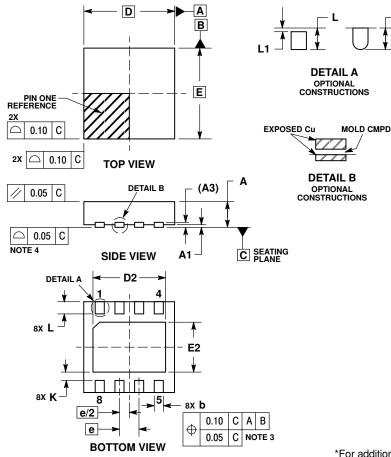
PD	= Power dissipation (W)
V _{IN}	= Input Voltage (V)
R _{LOADX}	= Load Resistance on channel X (Ω)
I _{OCP}	= Output regulated current (A)

PCB Recommendations

The NCP382 integrates two PMOS FET rated up to 2 A, and the PCB design rules must be respected to properly evacuate the heat out of the silicon. The DFN8 PAD1 must be connected to ground plane to increase the heat transfer if necessary. Of course, in any case, this pad must not connect to any other potential. By increasing PCB area, the R_{0JA} of the package can be decreased, allowing higher current.



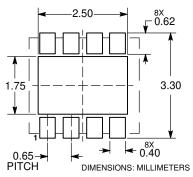

Figure 9. USB Host Typical Application


ORDERING INFORMATION

Device	Marking	Active Enable Level	Over Current Limit	Evaluation Board	UL 236 7	IEC60950 Ed2 (CB Scheme)	IEC60950 Ed2 Ad1, Ad2	Package	Shipping [†]
NCP382LMN05- AATXG	382 L05	ENx	0.5 A	NCP382LM N05AGEVB	Ν	N	N		
NCP382LMN10- AATXG	382 L10		1.0 A	NCP382LM N10AGEVB	Ν	N	N		
NCP382LMN15- AATXG	382 L15	Low	1.5 A	NCP382LM N15AGEVB	Ν	N	N		
NCP382LMN20- AATXG	382 L20		2.0 A	NCP382LM N20AGEVB	Ν	N	N	DFN8	3000 /
NCP382HMN05- AATXG	382 H05		0.5 A	NCP382HM N05AGEVB	Ν	N	N	(Pb–Free)	Tape / Reel
NCP382HMN10- AATXG	382 H10	ENx	1.0 A	NCP382HM N10AGEVB	Ν	N	N		
NCP382HMN15- AATXG	382 H15	High	1.5 A	NCP382HM N15AGEVB	Ν	N	N		
NCP382HMN20- AATXG	382 H20		2.0 A	NCP382HM N20AGEVB	N	N	N		
NCP382LD05AA- R2G	382L05		0.5 A	NCP382LD 05AAGEVB	Y	Y	Y		
NCP382LD10AA- R2G	382L10	ENx Low	1.0 A	NCP382LD 10AAGEVB	Y	Y	Y		
NCP382LD15AA- R2G	382L15		1.5 A	NCP382LD 15AAGEVB	Y	Y	Y	SOIC-8	2500 /
NCP382HD05A- AR2G	382H05		0.5 A	NCP382HD 05AAGEVB	Y	Y	Y	(Pb–Free)	Tape / Reel
NCP382HD10A- AR2G	382H10	ENx High	1.0 A	NCP382HD 10AAGEVB	Y	Y	Y		
NCP382HD15A- AR2G	382H15		1.5 A	NCP382HD 15AAGEVB	Y	Y	Y	 	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM THE TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.80	1.00			
A1	0.00	0.05			
A3	0.20	REF			
b	0.25	0.35			
D	3.00 BSC				
D2	2.30	2.50			
Е	3.00	BSC			
E2	1.55	1.75			
е	0.65	0.65 BSC			
κ	0.20				
L	0.35	0.45			
L1	0.00	0.15			

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK** NOTES -X-2 3 5 В 0.25 (0.010) 🔘 ΥM S \oplus -Y-6 G С N X 45 SFATING PI ANF -Z-0.10 (0.004) 7 н 0.25 (0.010) M Z YS \oplus XS SOLDERING FOOTPRINT 1.52 0.060 7.0 4.0 0.275 0.155 0.6 1.270 0.024 0.050 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1

> *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdl/Patent_Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

- 1. DIMENSIONING AND TOLERANCING PER
 - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

 - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

STANDARD IS 751-07.								
	MILLIN	IETERS	INC	HES				
DIM	MIN MAX		MIN	MAX				
Α	4.80	5.00	0.189	0.197				
В	3.80	4.00	0.150	0.157				
С	1.35 1.75		0.053	0.069				
D	0.33	0.51	0.013	0.020				
G	1.27	7 BSC	0.050 BSC					
Н	0.10	0.25	0.004	0.010				
J	0.19	0.25	0.007	0.010				
к	0.40 1.27		0.016	0.050				
М	0 ° 8 °		0 °	8 °				
Ν	0.25 0.50		0.010	0.020				
S	5.80	6.20	0.228	0.244				