: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NCP5612

High Efficiency Ultra Small Thinnest White LED Driver

The NCP5612 product is a dual output LED driver dedicated to the LCD display backlighting.

The built-in DC/DC converter is based on a high efficient charge pump structure with operating mode 1 x and 1.5 x . It provides a peak 87% efficiency together with a 0.2% LED to LED matching.

Features

- Support the Single Wire Serial Link Protocol
- Peak Efficiency 90% with 1x and $1.5 x$ Mode
- Programmable Dimming ICON Function
- Built-in Short Circuit Protection
- Provides 16 steps Current Control
- Controlled Start-up Inrush Current
- Built-in Automatic Open Load Protection
- Tight 0.2% Matching Tolerance
- Accurate 1\% Output Current Tolerance
- Smallest Available Package on the Market
- This is a Pb -Free Device

Typical Applications

- Portable Back Light
- Digital Cellular Phone Camera Photo Flash
- LCD and Key Board Simultaneous Drive

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING
DIAGRAM
PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shippingt
NCP5612MUTBG	LLGA12 (Pb-Free)	3000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Typical Single Wire White LED Driver

Figure 2. Simplified Block Diagram

PIN FUNCTION DESCRIPTION

Pin No.	Symbol	Function	Description
1	GND	POWER	This pin is the GROUND signal for the power analog blocks and must be connected to the system ground. This pin is the GROUND reference for the DC/DC converter and the output current control. The pin must be connected to the system ground, a ground plane being strongly recommended.
2	LED1	INPUT, POWER	This pin sinks to ground and monitors the current flowing into the first LED, intended to be used in backlight application. The current is limited to 30 mA maximum (Note 2). The LED1 is deactivated when the ICON bit of the LED-REG register is High. The LED1 is automatically disconnected when an open load is sensed pin 2 during the operation.
3	LED2	INPUT, POWER	This pin sinks to ground and monitors the current flowing into the second LED, intended to be used in backlight application. The current is limited to 30 mA maximum (Note 2). The LED2 fulfills the ICON function, LED1 being deactivated, when the ICON bit of the LED-REG register is High. The LED2 is automatically disconnected when an open load is sensed pin 3 during the operation.
4	$\mathrm{I}_{\text {REF }}$	INPUT, ANALOG	This pin provides the reference current, based on the internal band-gap voltage reference, to control the output current flowing in the LED. A 1% tolerance, or better, resistor shall be used to get the highest accuracy of the LED biases. An external current source can be used to bias this pin to dim the light coming out of the LED. In no case shall the voltage at pin 4 be forced either higher or lower than the 600 mV provided by the internal reference.
5	CNTL	INPUT, DIGITAL	This pin supports the flow of data between the external MCU and the NCP5612 internal registers. The protocol makes profit of a Single Wire structure associated to a Serial 8 bits format data flow.
6	NC	-	No internal connection
7	$\mathrm{V}_{\text {OUT }}$	OUTPUT, POWER	This pin provides the output voltage supplied by the DC/DC converter. The $\mathrm{V}_{\text {out }}$ pin must be decoupled to ground by a $1 \mu \mathrm{~F}$ ceramic capacitor located as close as possible to the pin. Cares must be observed to minimize the parasitic inductance at this pin. The circuit shall not operate without such bypass capacitor connected across the $\mathrm{V}_{\text {out }}$ pin and ground. The output voltage is internally clamped to 5.5 V maximum in the event of no load situation. On the other hand, the output current is limited to 40 mA (typical) in the event of a short circuit to ground.
8	C2P	POWER	One side of the external charge pump capacitor ($\mathrm{C}_{\mathrm{FLY}}$) is connected to this pin, associated with C2N (Note 1)
9	C2N	POWER	One side of the external charge pump capacitor ($\mathrm{C}_{\mathrm{FLY}}$) is connected to this pin, associated with C2P (Note 1)
10	C1P	POWER	One side of the external charge pump capacitor ($\mathrm{C}_{\mathrm{FLY}}$) is connected to this pin, associated with C1N (Note 1)
11	$\mathrm{V}_{\text {BAT }}$	INPUT, POWER	Input Battery voltage to supply the analog and digital blocks. The pin must be decoupled to ground by a $1.0 \mu \mathrm{~F}$ minimum ceramic capacitor.
12	C1N	POWER	One side of the external charge pump capacitor ($\mathrm{C}_{\mathrm{FLY}}$) is connected to this pin, associated with C1P (Note 1)

1. Using low ESR ceramic capacitor, $50 \mathrm{~m} \Omega$ maximum, is mandatory to optimize the Charge Pump efficiency.
2. Total DC/DC output current is limited to 60 mA .

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply	$\mathrm{V}_{\text {BAT }}$	7.0	V
Output Power Supply	Vout	7.0	V
Digital Input Voltage Digital Input Current	CNTL	$\begin{gathered} -0.3<\mathrm{V}<\mathrm{V}_{\mathrm{BAT}} \\ 1.0 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$
Human Body Model: $\mathrm{R}=1500 \Omega, \mathrm{C}=100 \mathrm{pF}$ (Note 3) Machine Model	ESD	$\begin{aligned} & \hline 2.0 \\ & 200 \end{aligned}$	$\begin{gathered} \hline \mathrm{kV} \\ \mathrm{~V} \end{gathered}$
LLGA12 Package Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ (Note 4) Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Air	P_{D} $\mathrm{R}_{\text {日JC }}$ $\mathrm{R}_{\text {日JA }}$	$\begin{gathered} 200 \\ 51 \\ 200 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Operating Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\text {max }}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Latch-up Current Maximum Rating per JEDEC Standard: JESD78	-	± 100	mA
Moisture Sensitivity (Note 5)	-	1	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. This device series contains ESD protection and exceeds the following tests:

Human Body Model (HBM) $\pm 2.0 \mathrm{kV}$ per JEDEC standard: JESD22-A114.
Machine Model (MM) ± 200 V per JEDEC standard: JESD22-A115.
4. The maximum package power dissipation limit must not be exceeded.
5. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

POWER SUPPLY SECTION (Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Min \& Max values are referenced $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient temperature, operating conditions $2.85 \mathrm{~V}<\mathrm{V}_{\text {bat }}<5.5 \mathrm{~V}$, unless otherwise noted.)

Rating	Pin	Symbol	Min	Typ	Max	Unit
Power Supply	11	$V_{\text {bat }}$	2.7	-	5.5	V
Continuous DC Current in the Load $@ \mathrm{~V}_{\mathrm{f}}=3.8 \mathrm{~V}, 3.2 \mathrm{~V}<\mathrm{V}_{\text {bat }}<5.5 \mathrm{~V}$, ICON $=\mathrm{L}$ (30 mA per LED)	7	$\mathrm{I}_{\text {out }}$	60	-	-	mA
Output ICON Current (ICON bit = H) @ $3.2 \mathrm{~V}<\mathrm{V}_{\text {bat }}<4.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	7	IICONTOL	-	450	550	$\mu \mathrm{A}$
Continuous Output Short Circuit Current	7	$\mathrm{I}_{\text {sch }}$	-	40	100	mA
Output Voltage Compliance (OVP)	7	$V_{\text {out }}$	4.8	-	5.7	V
DC/DC Start Time ($\mathrm{C}_{\text {out }}=1.0 \mu \mathrm{~F}$) from end of the CNTL $\mathrm{T}_{\text {dst }}$ delay to full load operation, @ $\mathrm{V}_{\text {bat }}=3.6 \mathrm{~V}$	12	$\mathrm{T}_{\text {start }}$	-	150	-	$\mu \mathrm{S}$
Output Voltage Turn-off ($\mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$) From Last Low Level at CNTL pin to $V_{\text {out }}=5 \%$	12	$\mathrm{T}_{\text {off }}$	-	500	-	$\mu \mathrm{S}$
$\begin{aligned} & \text { Standby Current, } 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {bat }}=3.6 \mathrm{~V}, \mathrm{I}_{\text {out }}=0 \mathrm{~mA}, \mathrm{ICON}=\mathrm{L} \end{aligned}$	11	$\mathrm{I}_{\text {stdb }}$	-	-	1.0	$\mu \mathrm{A}$
Operating Current, @ $\mathrm{I}_{\text {out }}=0 \mathrm{~mA}, \mathrm{ICON}=\mathrm{H}, \mathrm{V}_{\text {bat }}=3.6 \mathrm{~V}$	11	I_{op}	-	600	-	$\mu \mathrm{A}$
Output LED to LED Current Matching, $\mathrm{V}_{\text {bat }}=3.6 \mathrm{~V}$, $\mathrm{I}_{\text {LED }}=10 \mathrm{~mA}$, LED1 \& LED2 are Identical $-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	2, 3	$\mathrm{I}_{\text {MAT }}$	-	± 0.2	± 1.0	\%
Output Current Tolerance @ $\mathrm{V}_{\text {bat }}=3.6 \mathrm{~V}, \mathrm{I}$ LED $=10 \mathrm{~mA}-25^{\circ} \mathrm{C}<\mathrm{Ta}<85^{\circ} \mathrm{C}$	2, 3	$\mathrm{I}_{\text {TOL }}$	-	± 1.0	-	\%
Charge Pump Operating Frequency	-	$\mathrm{F}_{\mathrm{pwr}}$	-	1.0	-	MHz
Thermal Shutdown Protection	-	$\mathrm{T}_{\text {SD }}$	-	160	-	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Protection Hysteresis	-	TSDH	-	30	-	${ }^{\circ} \mathrm{C}$
	-	EPWR	-	$\begin{aligned} & \hline 87 \\ & 84 \end{aligned}$	-	\%

ANALOG SECTION (Typical values are referenced to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Min \& Max values are referenced $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient temperature, operating conditions $2.85 \mathrm{~V}<\mathrm{V}_{\text {bat }}<5.5 \mathrm{~V}$, unless otherwise noted.)

Rating	Pin	Symbol	Min	Typ	Max	Unit
Reference Current $@ \mathrm{~V}_{\text {ref }}=600 \mathrm{mV}($ Note 7$)$	4	$I_{\text {REF }}$	1.0	-	60	$\mu \mathrm{~A}$
Reference Voltage (Note 7$) 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	4	$\mathrm{~V}_{\text {REF }}$	-3%	600	$+3 \%$	mV
Base Reference Current ($\mathrm{I}_{\text {REF }}$) Current Ratio	-	$\mathrm{I}_{\text {LEDR }}$	-	500	-	-

6. The overall output current tolerance depends upon the accuracy of the external resistor. Using 1% or better resistor is recommended.
7. The external circuit must not force the $I_{\text {REF }}$ pin voltage either higher or lower than the 600 mV specified.

DIGITAL PARAMETERS SECTION (Typical values are referenced to $T_{A}=+25^{\circ} \mathrm{C}$, Min \& Max values are referenced $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient temperature, operating conditions $2.85 \mathrm{~V}<\mathrm{V}_{\text {bat }}<5.5 \mathrm{~V}$, unless otherwise noted.) Note: Digital inputs undershoot <-0.30 V to ground, Digital inputs overshoot $<0.30 \mathrm{~V}$ to $\mathrm{V}_{\text {BAT }}$.

Rating	Pin	Symbol	Min	Typ	Max	Unit
Positive going Input High Voltage Threshold, CNTL signals	5	$\mathrm{~V}_{\mathrm{IH}}$	1.4	-	$\mathrm{V}_{\mathrm{BAT}}$	V
Negative going Input Low Voltage Threshold, CNTL signals	5	$\mathrm{~V}_{\mathrm{IL}}$	-	-	0.6	V
Pull Down Resistor	5	$\mathrm{R}_{\mathrm{cntl}}$	-	150	-	$\mathrm{k} \Omega$
Delay between two consecutive frame (Note 9)	5	$\mathrm{t}_{\text {ddle }}$	10	-	-	$\mu \mathrm{s}$
Wake up delay (Note 9)	5	$\mathrm{t}_{\mathrm{wkp}}$	-	-	1.0	$\mu \mathrm{~s}$
CNTL signal rise and fall time (Note 9)	5	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	-	-	200	ns
Clocked CNTL High (Note 9)	5	t_{on}	-	-	75	$\mu \mathrm{~s}$
CNTL Low (Note 9)	5	$\mathrm{t}_{\text {on }}, \mathrm{t}_{\mathrm{off}}$	1.0	-	-	$\mu \mathrm{s}$
CNTL Store data delay (Note 9)	5	$\mathrm{~T}_{\text {dst }}$	-	200	300	$\mu \mathrm{~s}$
Input CNTL frequency (Note 9)	5	$\mathrm{~F}_{\mathrm{CNTL}}$	-	-	400	kHz

8. see Timings Reference
9. Parameter not tested in production, guaranteed by design.

APPLICATION INFORMATION

Figure 3. Timings Reference

Figure 4. Basic Cellular Phone Chip Set Digital Output Levels

DC/DC Operation

The converter is based on a charge pump technique to generate a DC voltage capable to supply the White LED load. The system regulates the current flowing into each LED by means of internal current mirrors associated with the white diodes. Consequently, the output voltage will be equal to the V_{f} of the LED, plus the drop voltage (ranging from 150 mV to 400 mV , depending upon the output current and $\mathrm{V}_{\text {bat }}$ / V_{f} ratio) developed across the internal NMOS mirror. Typically, assuming a standard white LED forward biased at 10 mA , the output voltage will be 3.6 V .

The built-in OVP circuit continuously monitors the output voltage and stops the converter when the voltage is above 5.0 V typical. The converter resumes to normal operation when the voltage drops below the typical 5.0 V (no latch-up mechanism). Consequently, the chip can operate with no load during any test procedures.

Load Current Calculation

The load current is derived from the 600 mV reference voltage provided by the internal Band Gap associated to the
external resistor connected across $\mathrm{I}_{\text {REF }}$ pin and Ground (see Figure 5). In any case, no voltage shall be forced at $\mathrm{I}_{\text {REF }}$ pin, either downward or upward.
The reference current is multiplied by the internal current mirror, associated to the number of pulses as depicted Figure 9, to yield the output load current. Since the reference voltage is based on a temperature compensated Band Gap, a tight tolerance resistor will provide a very accurate load current. The resistor is calculated from the Ohm's law ($\mathrm{R}_{\text {bias }}=\mathrm{V}_{\text {ref }} / \mathrm{I}_{\text {REF }}$) and define the maximum current flowing into the LED when 20 pulses have been counted at the CNTL pin.

Since the reference current must be between the minimum and maximum specified, the resistor value will range between $\mathrm{R}_{\text {bias }}=300 / 30 \mathrm{~mA}=10 \mathrm{k} \Omega$ and $\mathrm{R}_{\text {bias }}=$ $300 / 0.5 \mathrm{~mA}=600 \mathrm{k} \Omega$. Obviously, the tolerance of such a resistor must be 1% or better, with a 100 ppm thermal coefficient, to get the expected overall tolerance.
Typical applications will run with $R_{\text {bias }}=10 \mathrm{k} \Omega$ to make profit of the full dynamic range provided by the S -Wire DATA byte.

Figure 5. Basic Reference Current Source

Load Connection

The NCP5612 is capable to drive the two LED simultaneously, as depicted (see Figure 1), but the load can be arranged to accommodate one or two LED if necessary

in the application (see Figure 6). In this case, the two current mirrors can be connected in parallel to drive a single powerful LED, thus yielding 60 mA current capability in a single LED.

Figure 6. Typical Single and Double LED Connections

Finally, an external network can be connected across $\mathrm{V}_{\text {out }}$ and ground, but the current through such network will not be regulated by the NCP5612 chip (see Figure 7). On top of that, the total current out of the $V_{\text {out }}$ pin shall be limited to 60 mA .

Figure 7. Extra Load Connected to $\mathrm{V}_{\text {out }}$

Single Wire Serial Link Protocol

The proposed S-WIRE uses a pulse count technique already existing in the data exchange systems. The protocol supports broken transmission, assuming the hold time is shorter than the maximum 200μ s typical specified in the data sheet. The S-WIRE details are provided in the AND8264 application note.

Based on the two examples provided in Figure 8, the CNTL pin supports two digital level:
CNTL $=$ Low \rightarrow the system is shut-off and no current flow in either LED1 or LED2.
CNTL $=$ High \rightarrow the system is active and the two LED are powered according to the selected sequence.
There is no time delay associated with the Low state and the LED are switched Off when the CNTL signal drops to Low. To program a new LED configuration, one shall send the number of pulses on the CNTL pin according to the true table:

- The internal counter is reset to zero on the first negative going transient present on the CNTL pin
- The first four positive going pulses are used to control the ICON (LED2):

1. Pulse \#1 \rightarrow ICON $=100 \mu \mathrm{~A}$
2. Pulse \# $2 \rightarrow \mathrm{ICON}=150 \mu \mathrm{~A}$
3. Pulse $\# 3 \rightarrow \mathrm{ICON}=250 \mu \mathrm{~A}$
4. Pulse $\# 4 \rightarrow \mathrm{ICON}=450 \mu \mathrm{~A}$

- The fifth positive pulse will clear the ICON and activate the normal operation of LED1 and LED2
- The pulses from the fifth to the twentieth will increase the LED current according to a pseudo logarithmic scale (see Figure 9).
- Any pulses beyond the twentieth will not make change to the LED current if the delay between the pulses is shorter than $75 \mu \mathrm{~s}$.
- The system returns to zero if a pulse, delayed by $200 \mu \mathrm{~s}-\mathrm{T}_{\mathrm{dst}}-$, follows the twentieth one and the cycle restart from the beginning.
Once the expected LED current value is reached, the CNTL pin must stay High to store the new data and maintain the LED active.
The contain of the counter is stored into the internal LED registers at the end of the built-in 200μ s typical delay: no action will take place during the end of the last positive going pulse and the end of the $\mathrm{T}_{\text {dst }}$ delay. Such a protocol prevent the system for broken transmission.
On the other hand, in order to avoid corrupted data transmission, the High level shall be 75μ s maximum during a given data frame. Consequently, the pulse frequency is bounded by a 13 kHz minimum and a 400 kHz maximum.

Figure 8. Basic NCP5612 Programming Sequence

DIMMING

The built-in Single Wire Serial Link interface provides a simple way to accurately control the output current flowing in the two LED. Provision have been made, at silicon level, to provide a full dimming of the backlight (NORMAL mode of operation), the ICON current being adjustable in four steps when it is activated.

Table 1. LED Dimming Configuration

Pulse Count	LED activity
Pulse 1	LED\#2 $=100 \mu \mathrm{~A}$, LED\#1 de-activated
Pulse 2	LED\#2 $=150 \mu \mathrm{~A}$, LED\#1 de-activated
Pulse 3	LED\#2 $=250 \mu \mathrm{~A}$, LED\#1 de-activated
Pulse 4	LED\#2 $=450 \mu \mathrm{~A}$, LED\#1 de-activated
Pulse 5 to Pulse 20	ICON de-activated, NORMAL back- light takes place

The DC/DC converter is switched OFF and the two LED are disconnected when LED-REG=\$00.

When the ICON mode is activated, the DC/DC converter is switched OFF, LED\#1 is deactivated from the LED current sense and the programmed bias current (powered from the $\mathrm{V}_{\text {bat }}$ source) is forced into LED\#2.

Bit Clock	I-LED(mA)	Bit Clock	I-LED(mA)
1	1	9	12
2	2	10	14
3	3	11	16
4	4	12	19
5	5	13	22
6	6	14	25
7	8	15	28
8	10	16	31

Figure 9. Typical Output Current Slope

Figure 10. Typical Efficiency

Figure 11. Typical LED to LED Current Matching

Figure 12. Demo Board Schematic Diagram

NCP5612

PACKAGE DIMENSIONS

LLGA12
MU SUFFIX
CASE 513AA-01
ISSUE O

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.50	0.60
A1	0.00	0.05
b	0.15	0.25
D	2.00	
DS	0.80	
E	1.00	
E2	0.00	
0.55	BSC	
e	0.40	
K	0.25	$-2 .--$
L	0.30	0.50
L1	0.40	0.60

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: $303-675-2175$ or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

