imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.2 MHz, 42 μA Low Power Operational Amplifier

The NCS20081/2/4 is a family of single, dual and quad Operational Amplifiers (Op Amps) with 1.2 MHz of Gain–Bandwidth Product (GBWP) and draws only 42 μ A of Quiescent current. The NCS2008x has Input Offset Voltage of 4 mV and operates from 1.8 V to 5.5 V supply voltage over a wide temperature range (-40°C to +125°C). The Rail–to–Rail In/Out operation allows the designers to use the entire supply voltage range while taking advantage of the 1.2 MHz GBWP. Thus, this family offers superior performance over many industry standard parts. These devices are AEC–Q100 qualified which is denoted by the NCV suffix.

NCS2008x's low current consumption and low voltage performance in space saving packages, makes them ideal for sensor signal conditioning and low voltage current sensing applications in Automotive, Consumer and Industrial markets.

Features

- Wide Bandwidth: 1.2 MHz
- Low Supply Current/ Channel: 42 µA (typ.)
- Low Input Offset Voltage: 4 mV (max.)
- Wide Supply Range: 1.8 V to 5.5 V
- Wide Temperature Range: -40°C to +125°C
- Rail-to-Rail Input and Output
- Unity Gain Stable
- Available in Single, Dual and Quad Packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Automotive
- Battery Powered/ Portable Application
- Sensor Signal Conditioning
- Low Voltage Current Sensing
- Filters Circuits
- Unity Gain Buffer

ON Semiconductor®

www.onsemi.com

SC70-5 CASE 419A

TSOP-5/SOT23-5 CASE 483

Micro8[™]/MSOP8 CASE 846A

CASE 751

SOIC-8

TSSOP-14

CASE 948G

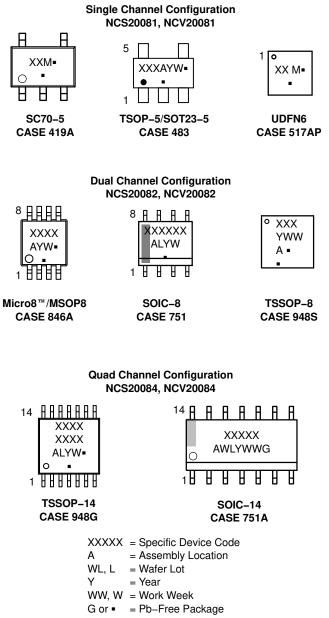
TSSOP-8 CASE 948S

SOIC-14

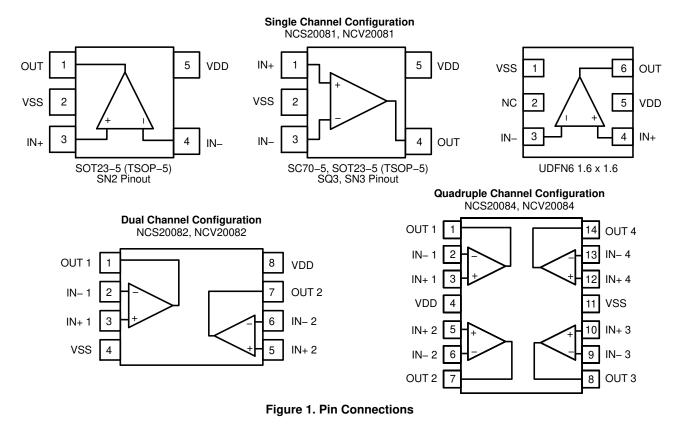
CASE 751A

UDFN6 CASE 517AP

DEVICE MARKING INFORMATION


See general marking information in the device marking section on page 2 of this data sheet.

ORDERING INFORMATION


See detailed ordering and shipping information on page 3 of this data sheet.

This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.

MARKING DIAGRAMS

(Note: Microdot may be in either location)

OBDEBING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS20081SQ3T2G			AAP	SC70	
NCS20081SN2T1G			AER	SOT23-5/TSOP-5	
NCS20081SN3T1G	Olasta	No	AEU	SOT23-5/TSOP-5	
NCS20081MUTAG**	Single		AP	UDFN6	
NCV20081SQ3T2G**		No	AAP	SC70	
NCV20081SN2T1G*	1	Yes	AER	SOT23-5/TSOP-5	
NCS20082DMR2G			2K82	Micro8/MSOP8	
NCS20082DR2G		No	NCS20082	SOIC-8	Contact local sales office for more information
NCS20082DTBR2G	Durk		K82	TSSOP-8	
NCV20082DMR2G*	Dual		2K82	Micro8/MSOP8	
NCV20082DR2G*		Yes	NCS20082	SOIC-8	
NCV20082DTBR2G*			K82	TSSOP-8	
NCS20084_			TBD	SOIC-14	1
NCS20084_	1	No	TBD	SOP-14	
NCS20084_	1		TBD	TSSOP-14	1
NCV20084_	Quad**		TBD	SOIC-14	1
NCV20084_		Yes	TBD	SOP-14	1
NCV20084_			TBD	TSSOP-14	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

**In Development. Not yet released.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Limit	Unit
Supply Voltage $(V_{DD} - V_{SS})$ (Note 2)	V _S	7	V
Input Voltage	VI	V_{SS} – 0.5 to V_{DD} + 0.5	V
Differential Input Voltage	V _{ID}	±Vs	V
Maximum Input Current	l _l	±10	mA
Maximum Output Current	I _O	±100	mA
Continuous Total Power Dissipation (Note 2)	PD	200	mW
Maximum Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Mounting Temperature (Infrared or Convection – 20 sec)	T _{mount}	260	°C
ESD Capability (Note 3) Human Body Model Machine Model Charge Device Model	ESD _{HBM} ESD _{MM} ESD _{CDM}	2000 100 2000	V
Latch–Up Current (Note 4)	I _{LU}	100	mA
Moisture Sensitivity Level (Note 5)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS for Safe Operating Area.

Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability.
 This device series incorporates ESD protection and is tested by the following methods:

 This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC–Q100–002 (JEDEC standard: JESD22–A114) ESD Machine Model tested per AEC–Q100–003 (JEDEC standard: JESD22–A115)

4. Latch-up Current tested per JEDEC standard: JESD78

5. Moisture Sensitivity Level tested per IPC/JEDEC standard: J-STD-020A

THERMAL INFORMATION

Parameter	Symbol	Channels	Package	Single Layer Board (Note 6)	Multi–Layer Board (Note 7)	Unit
			SC-70			
		Single	SOT23-5/TSOP-5			1
			UDFN6			1
		Dual	Micro8/MSOP8	236	167	1
Junction to Ambient Thermal Resistance	θ_{JA}		SOIC-8	190	131	°C/W
mermanteolotanoe			TSSOP-8	253	194	1
			SOIC-14			1
		Quad	SOP-14			1
			TSSOP-14			1

6. Value based on 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area

7. Value based on 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

OPERATING RANGES

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage	VS	1.8	5.5	V
Differential Input Voltage	V _{ID}		V _S	V
Input Common Mode Range	V _{ICM}	V _{SS} - 0.2	V _{DD} + 0.2	V
Ambient Temperature	T _A	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS AT V_S = 1.8 V T_A = 25°C; R_L \geq 10 k Ω ; V_{CM} = V_{OUT} = mid–supply unless otherwise noted. **Boldface** limits apply over the specified temperature range, T_A = -40°C to 125°C. (Note 8)

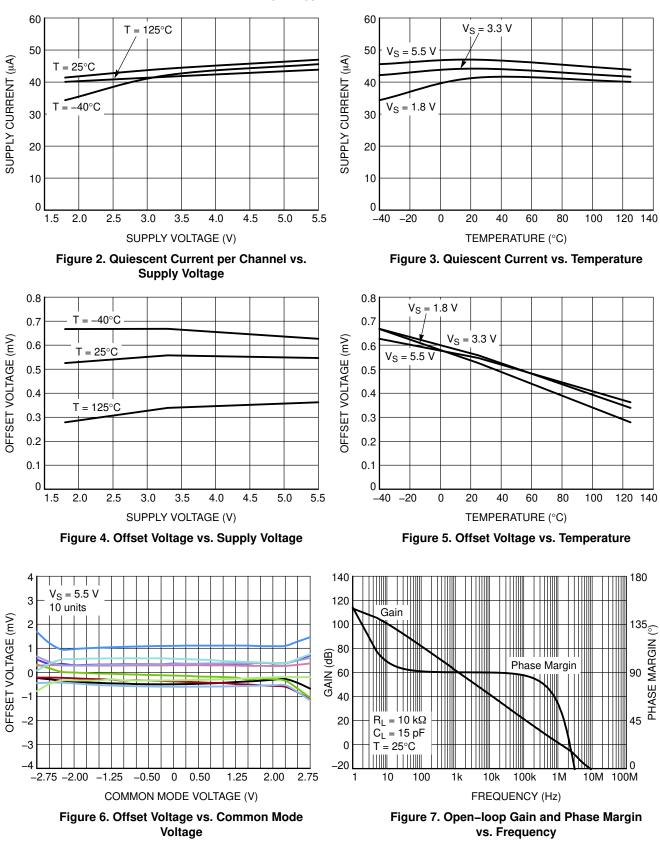
Parameter	Symbol	Co	nditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Input Offset Voltage	V _{OS}				0.5	3.5	mV
						4	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$				1		μV/°C
Input Bias Current (Note 8)	I _{IB}				1		pА
						1500	рА
Input Offset Current (Note 8)	I _{OS}				1		pА
						1100	pА
Channel Separation	XTLK		DC		125		dB
Differential Input Resistance	R _{ID}				10		GΩ
Common Mode Input Resistance	R _{IN}				10		GΩ
Differential Input Capacitance	C _{ID}				1		pF
Common Mode Input Capacitance	C _{CM}				5		pF
Common Mode Rejection Ratio	CMRR	V _{CM} = V _{SS} -	- 0.2 to V _{DD} + 0.2	48	73		dB
		V _{CM} = V _{SS} +	+ 0.2 to V _{DD} – 0.2	45			
OUTPUT CHARACTERISTICS					4		
Open Loop Voltage Gain	A _{VOL}			86	120		dB
	_			80			
Short Circuit Current	I _{SC}	Output to positive rail, sinking current			15		mA
			e rail, sourcing current		11		
Output Voltage High	V _{OH}		wing from positive rail		3	19	mV
	0.1					20	
Output Voltage Low	V _{OL}	Voltage output swing from negative rail			3	19	mV
						20	
AC CHARACTERISTICS	1 1				1		
Unity Gain Bandwidth	UGBW				1.2		MHz
Slew Rate at Unity Gain	SR	V _{ID} = 1.2	Vpp, Gain = 1		0.4		V/µs
Phase Margin	Ψm				60		0
Gain Margin	A _m				19		dB
Settling Time	t _S	V _{IN} = 1.2 Vpp,	Settling time to 0.1%		5		μs
-	_	Gain = 1	Settling time to 0.01%		6		
Open Loop Output Impedance	Z _{OL}	f =	100 Hz		0.8		Ω
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 1.2 Vpp	o, f = 1 kHz, Av = 1		0.005		%
Input Referred Voltage Noise	e _n	f = 1 kHz f = 10 kHz			30		nV/√Hz
-					24		1
Input Referred Current Noise	i _n	f = 1 kHz			300		fA/√Hz
SUPPLY CHARACTERISTICS					1		<u>.</u>
Power Supply Rejection Ratio	PSRR	N	o Load	67	90		dB
				64			1
Power Supply Quiescent Current	I _{DD}	Per cha	nnel, no load		42	60	μA

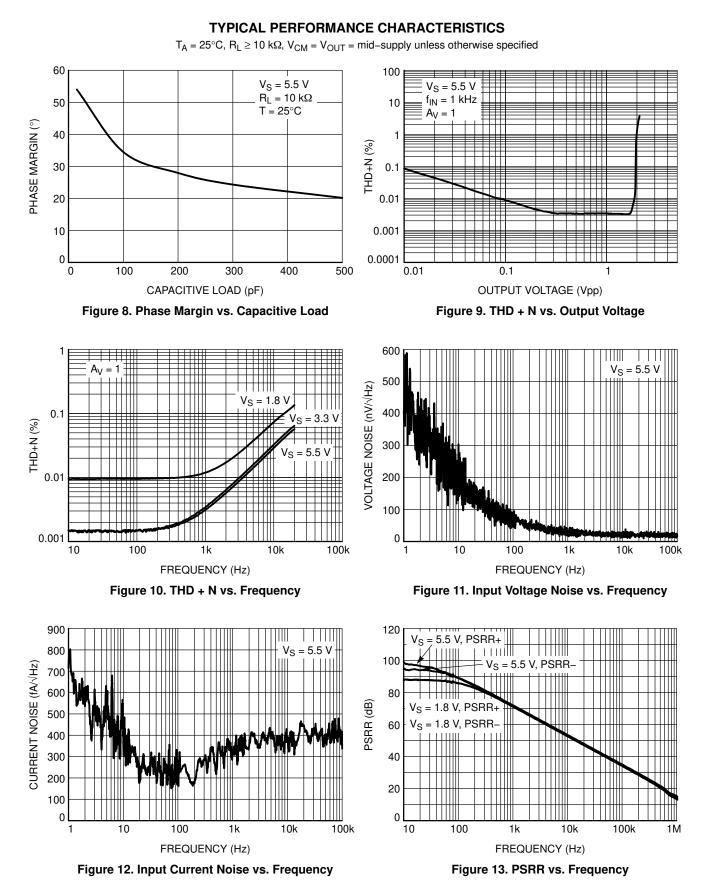
8. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

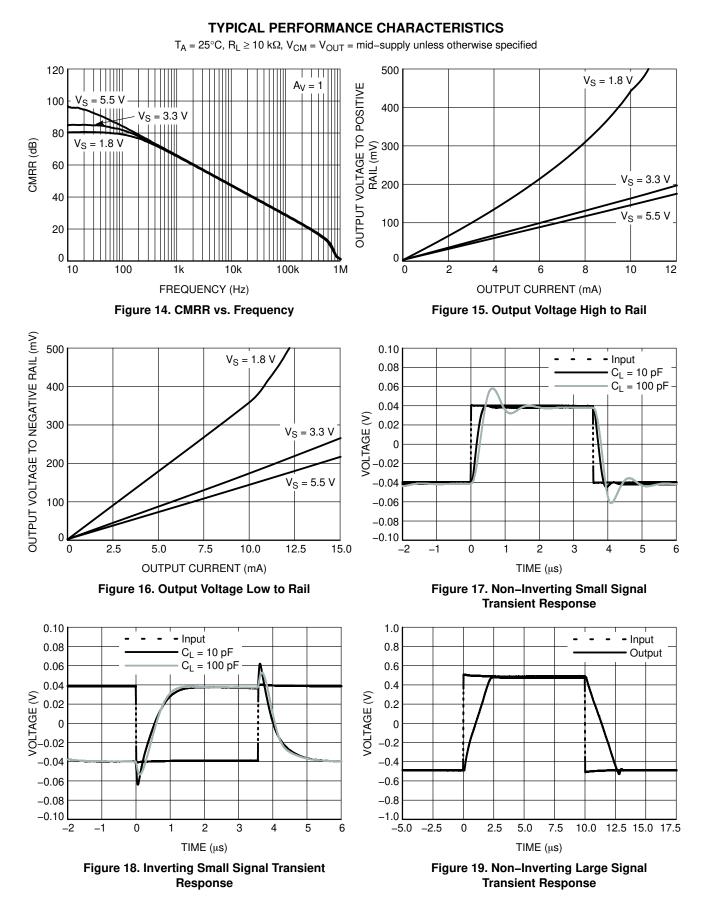
ELECTRICAL CHARACTERISTICS AT V_S = 3.3 V T_A = 25°C; R_L \geq 10 k Ω ; V_{CM} = V_{OUT} = mid–supply unless otherwise noted. **Boldface** limits apply over the specified temperature range, T_A = -40°C to 125°C. (Note 9)

Parameter	Symbol	Co	nditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Input Offset Voltage	V _{OS}				0.5	3.5	mV
			İ			4	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$				1		μV/°C
Input Bias Current (Note 9)	I _{IB}				1		pА
			Ì			1500	pА
Input Offset Current (Note 9)	I _{OS}				1		pА
			Ī			1100	pА
Channel Separation	XTLK		DC		125		dB
Differential Input Resistance	R _{ID}				10		GΩ
Common Mode Input Resistance	R _{IN}				10		GΩ
Differential Input Capacitance	C _{ID}				1		pF
Common Mode Input Capacitance	C _{CM}				5		pF
Common Mode Rejection Ratio	CMRR	V _{CM} = V _{SS} -	- 0.2 to V _{DD} + 0.2	53	76		dB
		V _{CM} = V _{SS} +	- 0.2 to V _{DD} – 0.2	48			
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	A _{VOL}			90	120		dB
				86			
Short Circuit Current	I _{SC}	Output to positiv	e rail, sinking current		15		mA
		Output to negative rail, sourcing current			11		
Output Voltage High	V _{OH}	DH Voltage output swing from positive rail			3	24	mV
						25	
Output Voltage Low	V _{OL}	Voltage output sv	ving from negative rail		3	24	mV
			Ĩ			25	
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW				1.2		MHz
Slew Rate at Unity Gain	SR	V _{IN} = 2.5	Vpp, Gain = 1		0.4		V/μs
Phase Margin	Ψm				60		0
Gain Margin	A _m				18		dB
Settling Time	t _S	$V_{IN} = 2.5 Vpp,$	Settling time to 0.1%		5		μs
		Gain = 1	Settling time to 0.01%		6		
Open Loop Output Impedance	Z _{OL}	f =	100 Hz		0.8		Ω
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 2.5 Vpp, f = 1 kHz, Av = 1			0.005		%
Input Referred Voltage Noise	e _n	f = 1 kHz			30		nV/√Hz
		f = 10 kHz			24		
Input Referred Current Noise	i _n	f = 1 kHz			300		fA/√Hz
SUPPLY CHARACTERISTICS							
Power Supply Rejection Ratio	PSRR	N	o Load	67	90		dB
				64			
Power Supply Quiescent Current	I _{DD}	Per cha	nnel, no load		42	60	μΑ

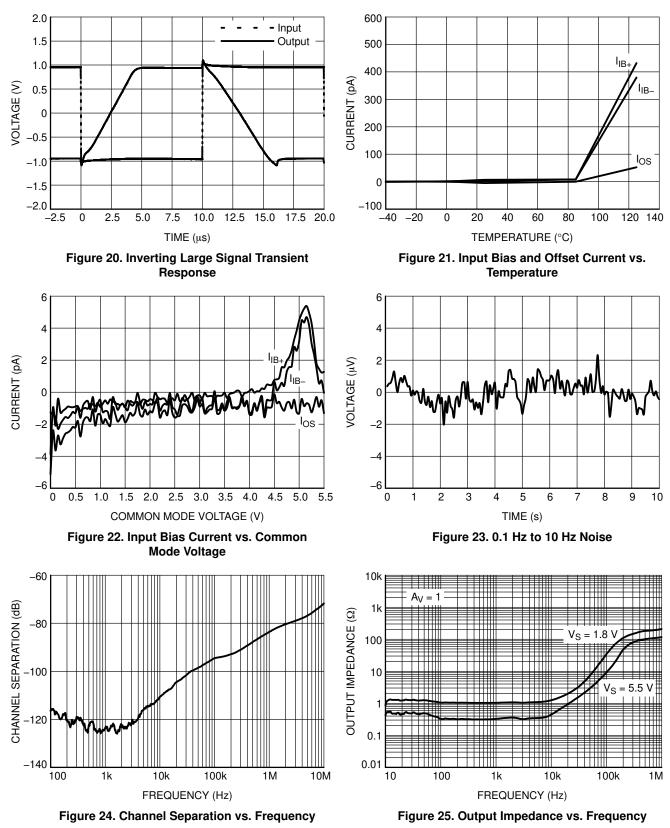
9. Performance guaranteed over the indicated operating temperature range by design and/or characterization.


ELECTRICAL CHARACTERISTICS AT V_{S} **= 5.5 V** T_A = 25°C; R_L ≥ 10 kΩ; V_{CM} = V_{OUT} = mid–supply unless otherwise noted. **Boldface** limits apply over the specified temperature range, T_A = -40°C to 125°C. (Note 10)


Parameter	Symbol	Cor	nditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Input Offset Voltage	V _{OS}				0.5	3.5	mV
			1			4	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$				1		μV/°C
Input Bias Current (Note 10)	I _{IB}				1		рА
			İ			1500	рА
Input Offset Current (Note 10)	I _{OS}				1		рА
			Ī			1100	pА
Channel Separation	XTLK		DC		125		dB
Differential Input Resistance	R _{ID}				10		GΩ
Common Mode Input Resistance	R _{IN}				10		GΩ
Differential Input Capacitance	C _{ID}				1		pF
Common Mode Input Capacitance	C _{CM}				5		pF
Common Mode Rejection Ratio	CMRR	$V_{CM} = V_{SS}$ -	- 0.2 to V _{DD} + 0.2	55	79		dB
		$V_{CM} = V_{SS} +$	- 0.2 to V _{DD} – 0.2	51			
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	A _{VOL}			90	120		dB
			Ì	86			1
Short Circuit Current	I _{SC}	Output to positiv	e rail, sinking current		15		mA
	Γ	Output to negative	e rail, sourcing current		11		1
Output Voltage High	V _{OH}	Voltage output swing from positive rail			3	24	mV
						25	
Output Voltage Low	V _{OL}	Voltage output sv	ving from negative rail		3	24	mV
						25	
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW				1.2		MHz
Slew Rate at Unity Gain	SR	$V_{ID} = 5$ V	/pp, Gain = 1		0.4		V/µs
Phase Margin	Ψm				60		0
Gain Margin	A _m				17		dB
Settling Time	t _S	$V_{IN} = 5 Vpp,$	Settling time to 0.1%		5		μs
		Gain = 1	Settling time to 0.01%		6		
Open Loop Output Impedance	Z _{OL}	f = 100 Hz			0.8		Ω
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	$V_{IN} = 5 Vpp, f = 1 kHz, Av = 1$			0.005		%
Input Referred Voltage Noise	e _n	f = 1 kHz			30		nV/√Hz
		f = 10 kHz			24		
Input Referred Current Noise	i _n	f = 1 kHz			300		fA/√Hz
SUPPLY CHARACTERISTICS							
Power Supply Rejection Ratio	PSRR	N	o Load	67	90		dB
				64			
Power Supply Quiescent Current	I _{DD}	Per cha	nnel, no load		48	70	μΑ


10. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $T_A = 25^{\circ}C$, $R_L \ge 10 \text{ k}\Omega$, $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise specified}$

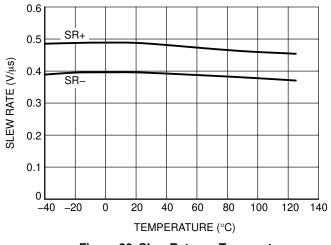
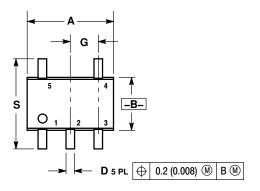
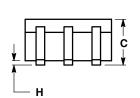
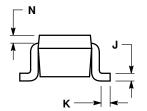


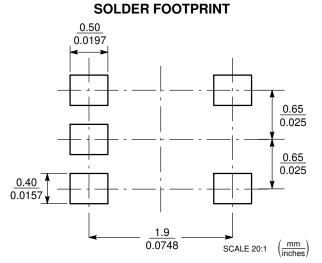
TYPICAL PERFORMANCE CHARACTERISTICS

 T_A = 25°C, $R_L \geq$ 10 kΩ, V_{CM} = V_{OUT} = mid–supply unless otherwise specified

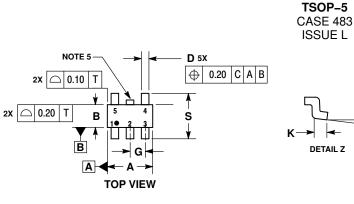
TYPICAL PERFORMANCE CHARACTERISTICS

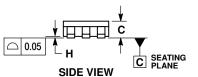
 T_A = 25°C, $R_L \geq$ 10 kΩ, V_{CM} = V_{OUT} = mid–supply unless otherwise specified

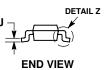






Figure 26. Slew Rate vs. Temperature

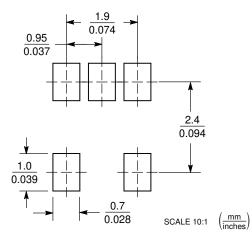
SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L

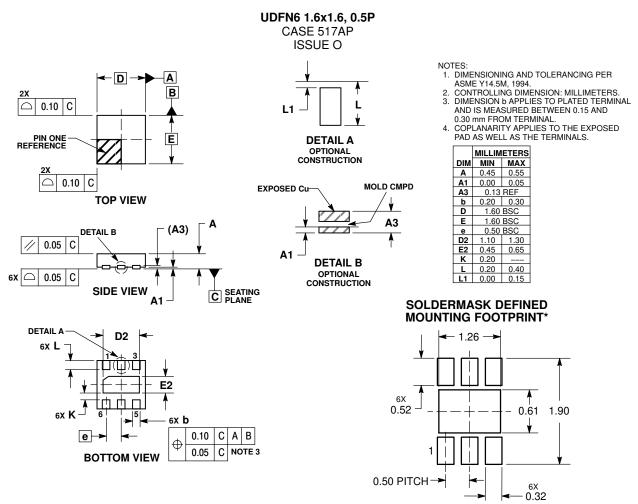





NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI V14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A–01 OBSOLETE. NEW STANDARD 419A–02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

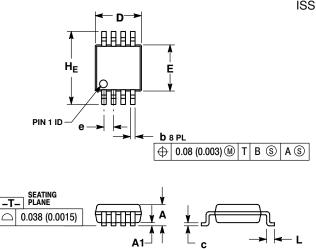
	INC	HES	MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.071	0.087	1.80	2.20		
В	0.045	0.053	1.15	1.35		
С	0.031	0.043	0.80	1.10		
D	0.004	0.012	0.10	0.30		
G	0.026	BSC	0.65	0.65 BSC		
Н		0.004		0.10		
ſ	0.004	0.010	0.10	0.25		
K	0.004	0.012	0.10	0.30		
N	0.008	REF	0.20	REF		
S	0.079	0.087	2.00	2.20		




- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
 OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2
 - TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIN	IETERS
DIM	MIN	MAX
Α	3.00	BSC
В	1.50	BSC
С	0.90	1.10
D	0.25	0.50
G	0.95	BSC
н	0.01	0.10
J	0.10	0.26
ĸ	0.20	0.60
М	0 °	10 °
S	2.50	3.00

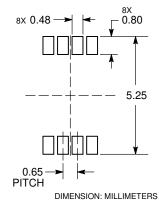
SOLDERING FOOTPRINT*


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

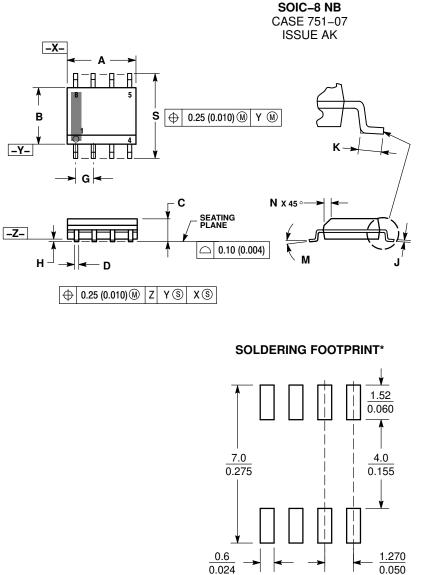
DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Micro8[™] CASE 846A-02 ISSUE J



NOTES:


- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 846A-01 OBSOLETE, NEW STANDARD 846A-02.

	М	ILLIMETE	RS		INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
е	0.65 BSC				0.026 BSC)
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

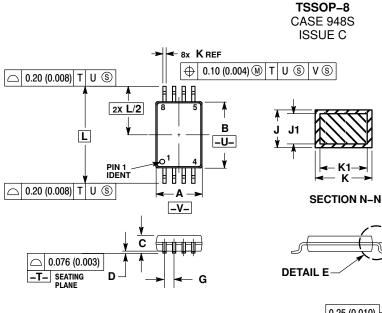
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DEG SIDE
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07
- STANDARD IS 751-07.

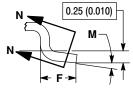
-	-				
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
К	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

STYLE 11: PIN 1. SOURCE 1

 $\left(\frac{\text{mm}}{\text{inches}}\right)$

SCALE 6:1

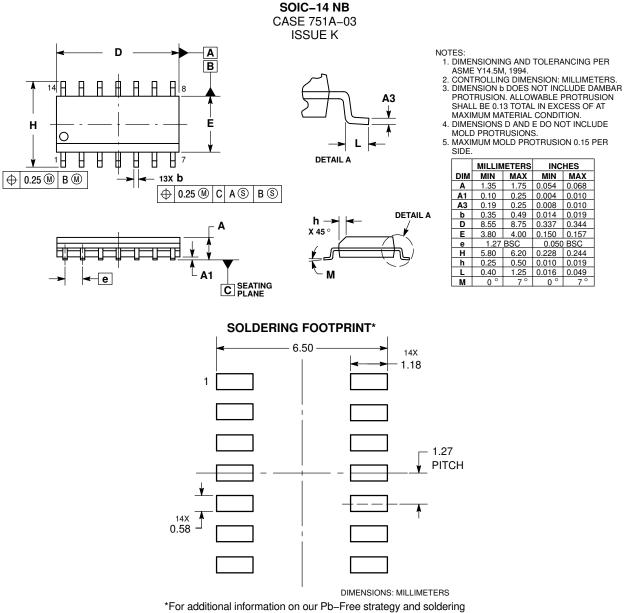

 	COOLICE
2.	GATE 1


З.	SOURCE 2
	O ATE O

4.	GATE 2			
_	DDAINIO			

5. 6. DRAIN 2 DRAIN 2

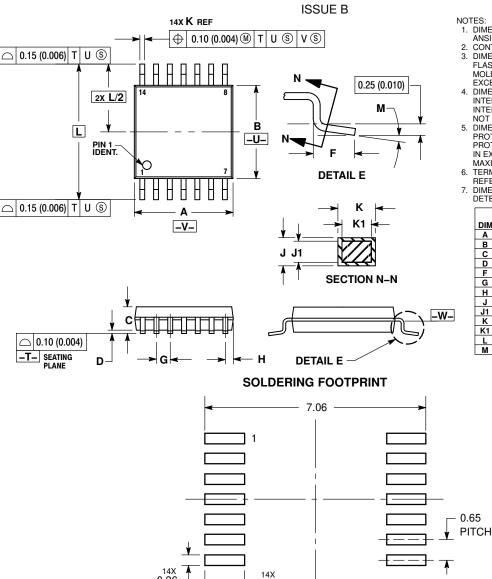
7. DRAIN 1 8. DRAIN 1



DETAIL E

-W-

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH
- OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) DED CIDE 4.
- PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	4.30	4.50	0.169	0.177
С		1.10		0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.70	0.020	0.028
G	0.65 BSC		0.026 BSC	
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0 °	8°	0°	8°

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14 CASE 948G

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. 3.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR 6 REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-7.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0 °	8 °	0 °	8 °

Micro8 is a trademark of International Rectifier

0.36

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor and an are trademarks of Semiconductor Components industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdi/Patent_Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

DIMENSIONS: MILLIMETERS

1 26

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

0