

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Operational Amplifier, Railto-Rail Output, 3 MHz BW

The NCx2007x series operational amplifiers provide rail–to–rail output operation, 3 MHz bandwidth, and are available in single, dual, and quad configurations. Rail–to–rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The NCx2007x can operate on supply voltages as low as 2.7 V over the temperature range of –40°C to 125°C. At a 2.7 V supply, the high bandwidth provides a slew rate of 2.8 V/ μ s while only consuming 405 μ A of quiescent current per channel. The wide supply range allows the NCx2007x to run on supply voltages as high as 36 V, making it ideal for a broad range of applications. Since this is a CMOS device, high input impedance and low bias currents make it ideal for interfacing to a wide variety of signal sensors. The NCx2007x devices are available in a variety of compact packages. Automotive qualified options are available under the NCV prefix.

Features

- Rail-To-Rail Output
- Wide Supply Range: 2.7 V to 36 V
- Wide Bandwidth: 3 MHz typical at $V_S = 2.7 \text{ V}$
- High Slew Rate: 2.8 V/ μ s typical at V_S = 2.7 V
- Low Supply Current: $405 \mu A$ per channel at $V_S = 2.7 V$
- Low Input Bias Current: 5 pA typical
- Wide Temperature Range: -40°C to 125°C
- Available in a variety of packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Current Sensing
- Signal Conditioning
- Automotive

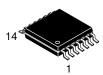
End Products

- Notebook Computers
- Portable Instruments
- Power Supplies

This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.

ON Semiconductor®

www.onsemi.com


SOT-553 CASE 463B TSOP-5 CASE 483

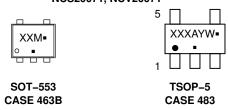
Micro8[™] CASE 846A SOIC-8 CASE 751

TSSOP-8 CASE 948S

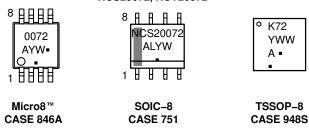
TSSOP-14 CASE 948G

CASE 751A

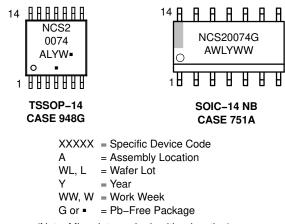
DEVICE MARKING INFORMATION

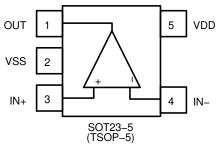

See general marking information in the device marking section on page 2 of this data sheet.

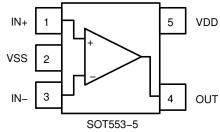
ORDERING INFORMATION


See detailed ordering and shipping information on page 4 of this data sheet.

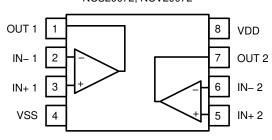
MARKING DIAGRAMS


Single Channel Configuration NCS20071, NCV20071


Dual Channel Configuration NCS20072, NCV20072



Quad Channel Configuration NCS20074, NCV20074



Single Channel Configuration NCS20071, NCV20071

Dual Channel Configuration NCS20072, NCV20072

Quadruple Channel Configuration NCS20074, NCV20074

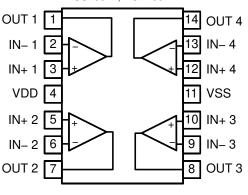


Figure 1. Pin Connections

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS20071SN2T1G		N	AEA	TSOP-5 (Pb-Free)	3000 / Tape and Reel
NCS20071XV53T2G (In Development)**	Olasaka	No	AL	SOT553-5 (Pb-Free)	4000 / Tape and Reel
NCV20071SN2T1G*	Single	Yes	AEA	TSOP-5 (Pb-Free)	3000 / Tape and Reel
NCV20071XV53T2G* (In Development)**		Yes	AL	SOT553-5 (Pb-Free)	4000 / Tape and Reel
NCS20072DMR2G			0072	Micro8 (MSOP8) (Pb-Free)	4000 / Tape and Reel
NCS20072DR2G		No	NCS20072	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCS20072DTBR2G	Dest		K72	TSSOP-8 (Pb-Free)	2500 / Tape and Reel
NCV20072DMR2G*	Dual		0072	Micro8 (MSOP8) (Pb-Free)	4000 / Tape and Reel
NCV20072DR2G*		Yes	NCS20072	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCV20072DTBR2G*			K72	TSSOP-8 (Pb-Free)	2500 / Tape and Reel
NCS20074DR2G		N	NCS20074	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCS20074DTBR2G	Overd	No	NCS2 0074	TSSOP-14 (Pb-Free)	2500 / Tape and Reel
NCV20074DR2G*	Quad	V. a	NCS20074	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20074DTBR2G*		Yes	NCS2 0074	TSSOP-14 (Pb-Free)	2500 / Tape and Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

^{**}Contact local sales office for availability.

ABSOLUTE MAXIMUM RATINGS (Note 1)

	Rating	Symbol	Limit	Unit
Supply Voltage (V _{DD} – V _{SS}) (Note 4)	V _S	40	V
Input Voltage		V _{CM}	$V_{SS} - 0.2$ to $V_{DD} + 0.2$	V
Differential Input Voltage (N	lote 2)	V_{ID}	±V _s	V
Maximum Input Current		I _{IN}	±10	mA
Maximum Output Current (Note 3)	I _O	±100	mA
Continuous Total Power Dis	ssipation (Note 4)	P_{D}	200	mW
Maximum Junction Temper	ature	T_J	150	°C
Storage Temperature Rang	e	T _{STG}	-65 to 150	°C
Mounting Temperature (Infr	rared or Convection – 20 sec)	T _{mount}	260	°C
ESD Capability (Note 5)	Human Body Model Machine Model – NCx20071 Machine Model – NCx20072, NCx20074 Charged Device Model – NCx20071, NCx20072 Charged Device Model – NCx20074	HBM MM MM CDM CDM	2000 200 150 2000 (C6) 1000 (C6)	V
Latch-Up Current (Note 6)		I _{LU}	100	mA
Moisture Sensitivity Level (Note 7)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
- 2. Maximum input current must be limited to ±10 mA. Series connected resistors of at least 500 Ω on both inputs may be used to limit the maximum input current to ±10 mA.
- 3. Total power dissipation must be limited to prevent the junction temperature from exceeding the 150°C limit.
- 4. Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability.
- 5. This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per JEDEC standard JS-001 (AEC-Q100-002)
 - ESD Machine Model tested per JEDEC standard JESD22-A115 (AEC-Q100-003)
 - ESD Charged Device Model tested per JEDEC standard JESD22-C101 (AEC-Q100-011)
- 6. Latch-up Current tested per JEDEC standard JESD78 (AEC-Q100-004)
- 7. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A

THERMAL INFORMATION

Parameter	Symbol	Package	Single Layer Board (Note 8)	Multi–Layer Board (Note 9)	Unit	
		SOT23-5 / TSOP5	265	195		
		SOT553-5	325	244		
	$\theta_{\sf JA}$	Micro8 / MSOP8	236	167		
Junction-to-Ambient		SOIC-8	190	131	°C/W	
		TSSOP-8	253	194	1	
		SOIC-14	142	101		
		TSSOP-14	179	128	1	

- 8. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area
- 9. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

OPERATING RANGES

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage (Single Supply)	Vs	2.7	36	V
Operating Supply Voltage (Split Supply)	Vs	±1.35	±18	V
Differential Input Voltage (Note 10)	V _{ID}		V _S	V
Input Common Mode Voltage Range	V _{CM}	V _{SS}	V _{DD} – 1.35	V
Ambient Temperature	T _A	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

10. Maximum input current must be limited to ± 10 mA. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 2.7 V $T_A = 25^{\circ}C$; $R_L \ge 10$ kΩ; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 11, 12)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							•
		NO	20074		1.3	±3.5	
	.,	NGX2	20071			±4.5	,,
Input Offset Voltage	V_{OS}	NO. 00070	NO 00070 NO 00071		1.3	±3	mV
		NGX20072	, NCx20074			±4	
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	T _A = 25°C	C to 125°C		2		μV/°C
Input Pice Current (Note 12)	1				5	200	π Λ
Input Bias Current (Note 12)	I _{IB}					1500	рA
		NO00071	NO00070		2	75	
Innut Officet Ourset (Note 10)	,	NGX20071	, NCx20072			500	^
Input Offset Current (Note 12)	los	NOv	20074		2	75	pА
		NGX.	20074			200	<u>] </u>
Observation	VTLK	D0	NCx20072		100		-ID
Channel Separation	XTLK	DC NCx20074			115		dB
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
Ossessa Mada Balastian Batia	OMPD		90	110		-ID	
Common Mode Rejection Ratio	CMRR $V_{CM} = V_{SS} + 0.2 \text{ V to } V_{DD} - 1.35 \text{ V}$		69			dB	
OUTPUT CHARACTERISTICS							
On and Lang Walks are Online				96	118		-ID
Open Loop Voltage Gain	A _{VOL}			86			dB
Outrait Outrait Outrait (Nat 40)	,	Op amp sir	king current		70		1
Output Current Capability (Note 13)	Ι _Ο	Op amp sou	rcing current		50		mA
Outract Vallages I Pale	M	Malla are and and and			0.006	0.15	.,
Output Voltage High	V _{OH}	voitage output swi	ng from positive rail			0.22	V
Outrot Vallages I am		Valla va andro da soli	on forms on a street or and		0.005	0.15	.,
Output Voltage Low	V _{OL}	voltage output swir	ng from negative rail			0.22	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz
Slew Rate at Unity Gain	SR	C _L = 20 pF	$R_L = 2 k\Omega$		2.8		V/μs
Phase Margin	ϕ_{m}	C _L =	25 pF		50		٥
Gain Margin	A _m	C _L =	25 pF		14		dB
Cattling Time		$V_O = 1 \text{ Vpp.}$ Settling time to 0.1%			0.6		
Settling Time	t _S	Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		1.2		μS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{11.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{12.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{13.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 2.7 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 11, 12)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS		•					-
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 0.5 Vpp, f = 1 kHz, Av = 1			0.05		%
Innut Defermed Valters Naise	_	f = 1	kHz		30		\ //
Input Referred Voltage Noise	e _n	f = 10 kHz			20		nV/√ Hz
Input Referred Current Noise	i _n	f = 1 kHz			90		fA/√Hz
SUPPLY CHARACTERISTICS							
Davida Overala Baile ation Batin	DODD			114	135		dB
Power Supply Rejection Ratio	PSRR	NO L	No Load				
		NO. 00074	No local		420	625	
		NCx20071	No load			765	μΑ
Power Supply Quiescent Current	I _{DD}				405	525	
		NGX20072, NGX20074	NCx20072, NCx20074 Per channel, no load			625	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 12. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 13. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 14, 15)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTICS					•	-	•
			10.00074		1.3	±3.5	
Innut Officet Vallege	V	ľ	NCx20071			±4.5	1
Input Offset Voltage	Vos	NO. 00	070 NO.00074		1.3	±3	mV
		NCx20072, NCx20074				±4	1
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$T_A = 2$	25°C to 125 °C		2		μV/°C
Land Disc Company (Nets 45)	,				5	200	^
Input Bias Current (Note 15)	I _{IB}					1500	рA
		NCx20071, NCx20072			2	75	
January Office A Commont (Nation 45)						500	
Input Offset Current (Note 15)	los		1000074		2	75	рA
		NCx20074				200	1
01 10 "	VT1.14	D.0	NCx20072		100		i.
Channel Separation	XTLK	DC	NCx20074		115		dB
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 14. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 15. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 16. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V $T_A = 25^{\circ}C$; $R_L \ge 10$ kΩ; $V_{CM} = V_{OUT} = \text{mid}$ –supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 14, 15)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit	
INPUT CHARACTERISTICS								
Common Mode Deiestien Detic	CMDD	V V 00	V+- V	102	125		٩D	
Common Mode Rejection Ratio	CMRR	$V_{CM} = V_{SS} + 0.2$	v to v _{DD} – 1.35 v	80			- dB	
OUTPUT CHARACTERISTICS								
Onen Leen Voltage Coin	۸			96	120		dB	
Open Loop Voltage Gain	A_{VOL}			86			ив	
Output Current Conshility (Note 16)		Op amp sin	king current		50		m 1	
Output Current Capability (Note 16)	Ι _Ο	Op amp sou	rcing current		60		- mA	
Outrout Valta and Himb	V	Valta a a sutant and	an francisco de altitudo de il		0.013	0.20	V	
Output Voltage High	V_{OH}	Voltage output swing from positive rail				0.25	V	
Output Voltage Low	V	Voltago output owin	og from pogotivo roil		0.01	0.10	V	
Output Voltage Low	V _{OL}	voitage output swir	ng from negative rail			0.15	v	
AC CHARACTERISTICS								
Unity Gain Bandwidth	UGBW	C _L = 25 pF			3		MHz	
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.7		V/μs	
Phase Margin	ϕ_{m}	C _L =	25 pF		50		٥	
Gain Margin	A _m	C _L =	25 pF		14		dB	
California Timor		$V_{O} = 3 \text{ Vpp},$	Settling time to 0.1%		1.2			
Settling Time	t _S	$V_O = 3 \text{ Vpp},$ Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		5.6		μS	
NOISE CHARACTERISTICS								
Total Harmonic Distortion plus Noise	THD+N	$V_{IN} = 2.5 \text{ Vpp, f}$	= 1 kHz, Av = 1		0.009		%	
Leave Defermed Valteria Naisa	_	f = 1	kHz		30		>/// 	
Input Referred Voltage Noise	e _n	f = 10	0 kHz		20		nV/√ Hz	
Input Referred Current Noise	i _n	f = 1	kHz		90		fA/√ Hz	
SUPPLY CHARACTERISTICS								
	2022			114	135			
Power Supply Rejection Ratio	PSRR	No Load		100			dB	
		NO00074	NI ₂ I ₂ = -I		430	635		
Danier Original Conference to		NCx20071	No load			775	1	
Power Supply Quiescent Current	I _{DD}	NO.00070 NO.00074	Banahanaal aa l		410	530	μΑ	
		NCx20072, NCx20074 Per channel, no load				630	1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{14.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{15.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{16.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 10 V $T_A = 25^{\circ}C$; $R_L \ge 10$ kΩ; $V_{CM} = V_{OUT} =$ mid–supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Innut Offact Valtage	V	NO.	20071		1.3	±3.5	mV
Input Offset Voltage	V _{OS}	INGX2	20071			±4.5	m۷
Input Offset Voltage	V	NCv20072	NCv20074		1.3	±3	mV
Input Offset Voltage	V _{OS}	NCX20072	, NCx20074			±4	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	T _A = 25°C	C to 125°C		2		μV/°C
Input Bias Current (Note 18)	1				5	200	pА
input bias dufferit (Note 10)	I _{IB}					1500	рΑ
		NCv20071	NCv20072		2	75	
Input Offset Current (Note 18)	laa	NCx20071, NCx20072				500	pА
input Offset Gurrent (Note 18)	los	NCv	20074		2	75	рА
		NOX	110720074			200	
Channel Separation	XTLK	DC	NCx20072		100		dB
Спаппеі Зерагаціоп	XILK	NCx20074			115		ub
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
Common Mode Dejection Datio	CMRR	V V .00	V to V	110	130		٩D
Common Mode Rejection Ratio	CIVINN	V _{CM} = V _{SS} + 0.2	V to V _{DD} – 1.35 V	87			dB
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	۸			98	120		dВ
Open Loop voltage Gain	A _{VOL}			88			dB
Output Current Capability (Note 19)	ı	Op amp sin	king current		50		m 1
Output Current Capability (Note 19)	Ι _Ο	Op amp sou	rcing current		65		mA
Output Voltage High	V	Voltago output owi	na from positivo rail		0.023	0.08	V
Output Voltage High	V _{OH}	voltage output swi	ng from positive rail			0.10	ľ
Output Voltage Low	M	Valtage output out	ag from pagative rail		0.022	0.3	V
Output voltage Low	V _{OL}	voitage output swii	ng from negative rail			0.35	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L = 25 pF			3		MHz
Slew Rate at Unity Gain	SR	$C_{L} = 20 \text{ pF}$	$R_L = 2 k\Omega$		2.6		V/µs
Phase Margin	φm	C _L =	25 pF		50		٥
Gain Margin	A _m	C _L =	25 pF		14		dB
Settling Time		$V_{O} = 8.5 \text{ Vpp},$	Settling time to 0.1%		3.4		
Setting Time	t _S	Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		6.8		μS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{17.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{18.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{19.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 10 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 7.5 Vpp, f		0.004		%	
Inc. t Deferred Valters No.	_	f = 1	kHz		30		
Input Referred Voltage Noise	e _n	f = 10 kHz			20		nV/√ Hz
Input Referred Current Noise	i _n	f = 1 kHz			90		fA/√ Hz
SUPPLY CHARACTERISTICS							
Device County Delegation Datie	2022			114	135		٩D
Power Supply Rejection Ratio	PSRR	INO L	_oad	100			dB
		NO00071	No load		430	645	
Developed Contract Comment		NCx20071	No load			785	1 ,
Power Supply Quiescent Current	I _{DD}				416	540	μΑ
		NCx20072, NCx20074 Per channel, no load				640	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 17. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
- 18. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 19. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V

 $T_A = 25^{\circ}\text{C}$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
		NCx20071			1.3	±3.5	mV
Innut Offact Valtage	Vos	NCX	20071			±4.5	mV
Input Offset Voltage		NCv20072	NCv20074		1.3	±3	mV
		NGX20072	NCx20072, NCx20074			±4	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$T_A = 25^{\circ}$	C to 125°C		2		μV/°C
	I _{IB}				5	200	
Input Bias Current (Note 21)		NCx20071, NCx20072				2000	pА
		NCx			1500		
		NCv20071	, NCx20072		2	75	
Input Offact Current (Note 21)		NGX20071	, NGX20072			1000	1
Input Offset Current (Note 21)	los	NCv	20074		2	75	pА
		NOX	20074			200]
Channel Consustion	VTLK	DC	NCx20072		100		4D
Channel Separation	XTLK	DC N	NCx20074		115		dB
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

- 21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.
- 22. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}C$; $R_L \ge 10$ kΩ; $V_{CM} = V_{OUT} =$ mid–supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS		.	<u>, , , , , , , , , , , , , , , , , , , </u>				
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
			$V_{CM} = V_{CC} + 0.2 \text{ V to}$	118	135		
		NCx20071	$V_{CM} = V_{SS} + 0.2 \text{ V to}$ $V_{DD} - 1.35 \text{ V}$	95			
			$V_{CM} = V_{SS} + 0.2 \text{ V to}$ $V_{DD} - 1.35 \text{ V}$	120	145		dB
Common Mode Rejection Ratio	CMRR	NCx20072		95			
		NCx20074	$V_{CM} = V_{CC} + 0.2 \text{ V to}$	120	145		
			$V_{CM} = V_{SS} + 0.2 \text{ V to}$ $V_{DD} - 1.35 \text{ V}$	85			
OUTPUT CHARACTERISTICS		•			•		
On and Learn Waltering Only				98	120		-ID
Open Loop Voltage Gain	A_{VOL}			88			dB
0 0 0		Op amp sinking current			50		
Output Current Capability (Note 22)	I _O	Op amp sou	rcing current		65		mA
			NO 00074		0.074	0.15	
Output Voltage High			NCx20071			0.22	V
		Voltage output swing			0.074	0.10	
	V _{OH}	from positive rail	NCx20072			0.15	
					0.074	0.10	
			NCx20074			0.12	
					0.065	0.3	
Output Voltage Low	V_{OL}	Voltage output swir	ng from negative rail			0.35	V
AC CHARACTERISTICS		•	•		•		
Unity Gain Bandwidth	UGBW	C _L =	25 pF		3		MHz
Slew Rate at Unity Gain	SR	C _L = 20 pF	$R_L = 2 k\Omega$		2.4		V/μs
Phase Margin	φ _m	C _L =	25 pF		50		0
Gain Margin	A _m	C _L =	25 pF		14		dB
O. William Time		V _O = 10 Vpp.	Settling time to 0.1%		3.2		
Settling Time	t _S	$V_O = 10 \text{ Vpp},$ Gain = 1, $C_L = 20 \text{ pF}$	Settling time to 0.01%		7		μS
NOISE CHARACTERISTICS							_
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 28.5 Vpp,	f = 1 kHz, Av = 1		0.001		%
Input Deferred Volters Notes		f = 1	l kHz		30		n\//./
Input Referred Voltage Noise	e _n	f = 1	0 kHz		20		nV/√Hz
Input Referred Current Noise	i _n	f = 1	l kHz		90		fA/√ Hz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{21.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{22.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}C$; $R_L \ge 10$ kΩ; $V_{CM} = V_{OUT} =$ mid–supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit		
SUPPLY CHARACTERISTICS									
Dawar Cumply Daigation Datio	PSRR	RR No Load		114	135		٩D		
Power Supply Rejection Ratio	PORR			100			dB		
			No load		480	700			
						840			
Barray Comple Original Company			Per channel, no load		465	570			
Power Supply Quiescent Current	IDD					700	μΑ		
			Day abaysal walland		465	600			
			Per channel, no load			700			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

^{21.} Performance guaranteed over the indicated operating temperature range by design and/or characterization.

^{22.} Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

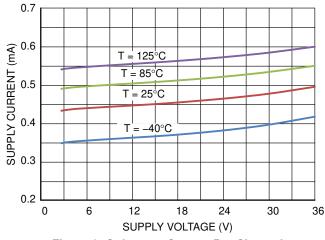


Figure 2. Quiescent Current Per Channel vs. Supply Voltage

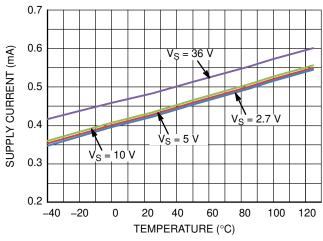


Figure 3. Quiescent Current vs. Temperature

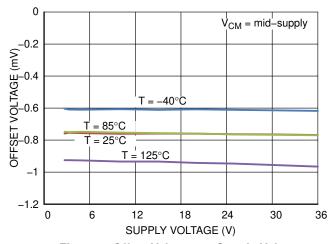


Figure 4. Offset Voltage vs. Supply Voltage

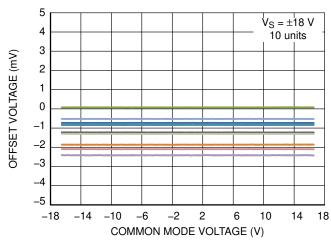


Figure 5. Input Offset Voltage vs. Common Mode Voltage

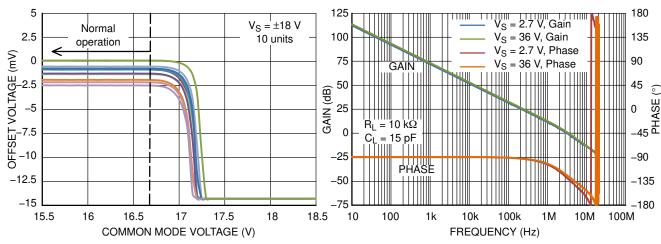


Figure 6. Input Offset Voltage vs. Common Mode Voltage

Figure 7. Gain and Phase vs. Frequency

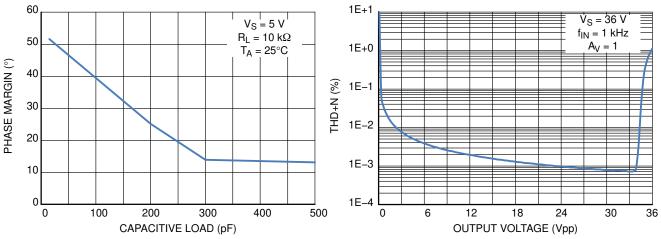


Figure 8. Phase Margin vs. Capacitive Load

Figure 9. THD+N vs. Output Voltage

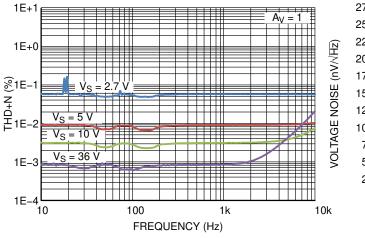


Figure 10. THD+N vs. Frequency

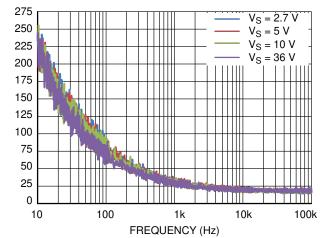


Figure 11. Input Voltage Noise vs. Frequency

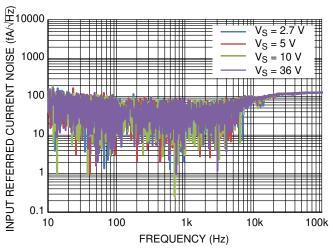


Figure 12. Input Current Noise vs. Frequency

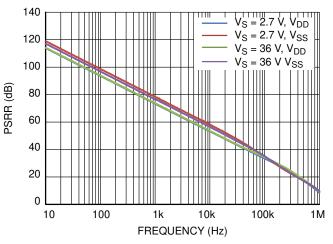
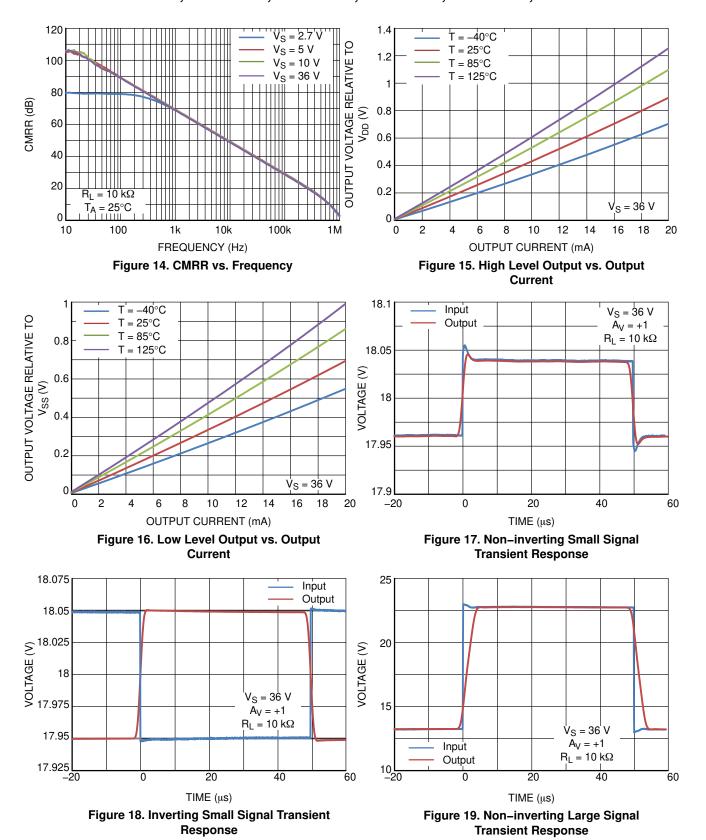



Figure 13. PSRR vs. Frequency

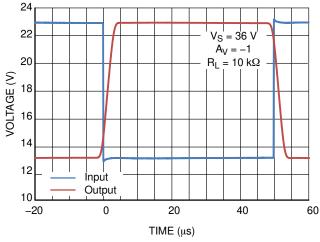


Figure 20. Inverting Large Signal Transient Response

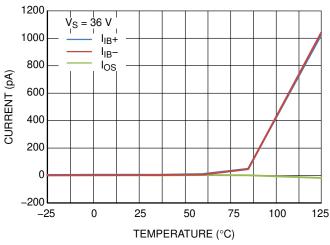


Figure 21. Input Bias and Offset Current vs.
Temperature

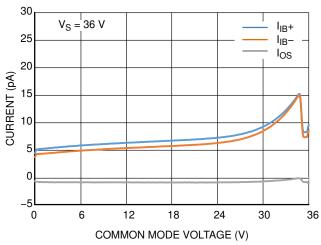


Figure 22. Input Bias Current vs. Common Mode Voltage

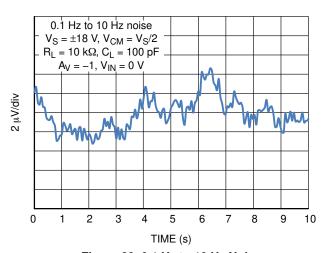


Figure 23. 0.1 Hz to 10 Hz Noise

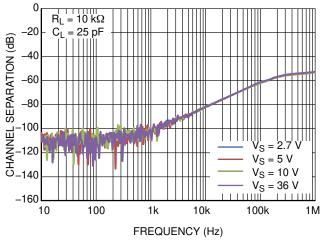


Figure 24. Channel Separation vs. Frequency

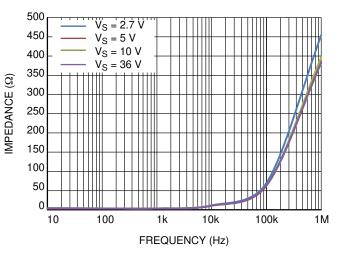


Figure 25. Open Loop Output Impedance

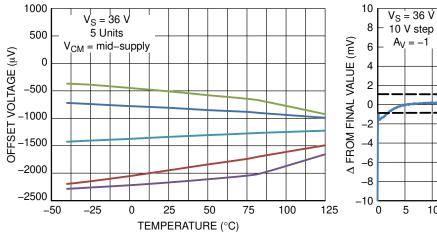


Figure 26. Offset Voltage vs. Temperature

Figure 27. Large Signal Settling Time

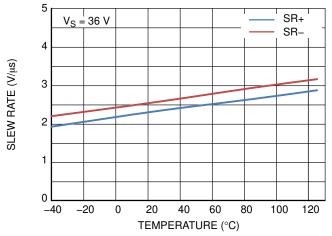


Figure 28. Slew Rate vs. Temperature

APPLICATIONS INFORMATION

Input Circuit

The NCS2007x input stage has a PMOS input pair and ESD protection diodes. The input pair is internally connected by back–to–back Zener diodes with a reverse voltage of 5.5 V. To protect the internal circuitry, the input current must be limited to 10 mA. When operating the

NCS2007x at differential voltages greater than V_{ID} = 26 V, series resistors can be added externally to limit the input current flowing between the input pins. Adding 500 Ω resistors in series with the input prevents the current from exceeding 10 mA over the entire operating range up to 36 V.

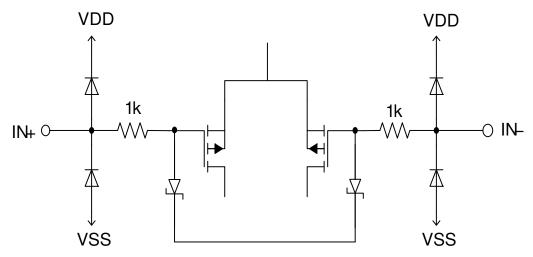
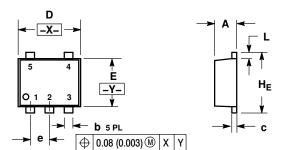


Figure 29. Differential Input Pair

Output

The NCS2007x has a class AB output stage with rail-to-rail output swing.

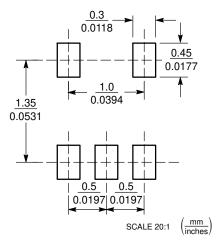
High output currents can cause the junction temperature to exceed the 150°C absolute maximum rating. In the case of a short circuit where the output is connected to either supply rail, the amount of current the op amp can source and sink is described by the output current capability parameter


listed in the Electrical Characteristics. The junction temperature at a given power dissipation, P, can be calculated using the following formula:

$$T_J = T_A + P \times \theta_{JA}$$

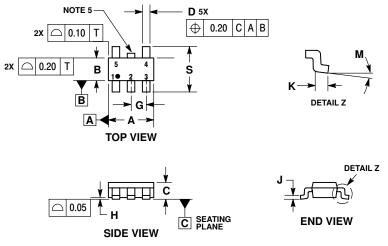
The thermal resistance between junction and ambient, θ_{JA} , is provided in the Thermal Information section of this datasheet.

PACKAGE DIMENSIONS


SOT-553, 5 LEAD CASE 463B ISSUE C

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS, MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC		0.020 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065


RECOMMENDED SOLDERING FOOTPRINT*

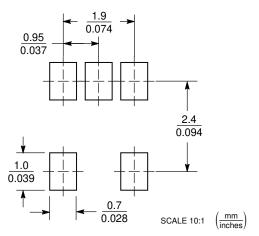
*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSOP-5 **CASE 483** ISSUE M

NOTES:

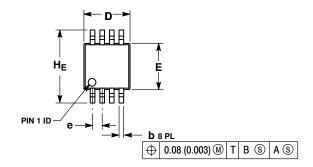
- DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE
- THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

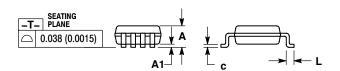

 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS, MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.

 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION.

 TRIMMED LEAD NOT TO EXTEND MODE THAN 0.2
- TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.85	3.15	
В	1.35	1.65	
С	0.90	1.10	
D	0.25	0.50	
G	0.95	BSC	
Н	0.01	0.10	
J	0.10	0.26	
K	0.20	0.60	
М	0°	10 °	
S	2.50	3.00	


SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

Micro8™ CASE 846A-02 **ISSUE J**

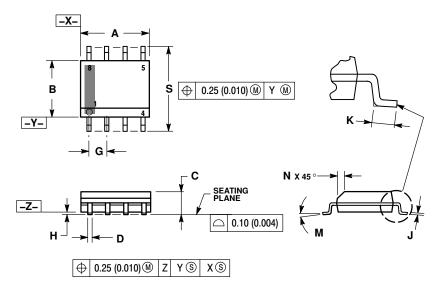
- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE 3. DIMENSION A DUES NOT INCLUDE MOLLO FLASH, PHOTHOSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.06) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.

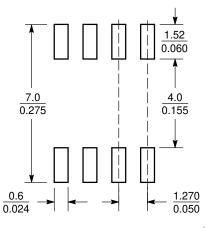
	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10		-	0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
е		0.65 BSC		0.026 BSC		
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199


RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK**

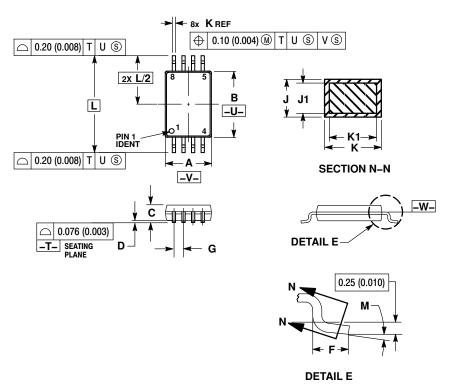


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE HOLD BEATBLICON.

- MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
 751–01 THRU 751–06 ARE OBSOLETE. NEW
 STANDARD IS 751–07.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*



SCALE 6:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

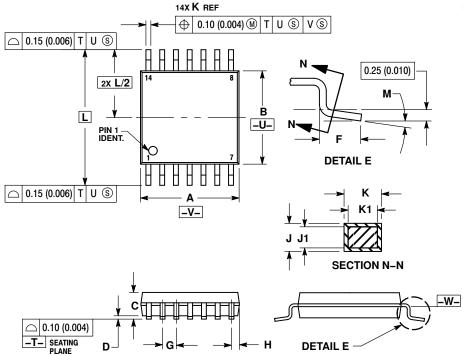
TSSOP-8 **CASE 948S** ISSUE C

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PER SIDE.

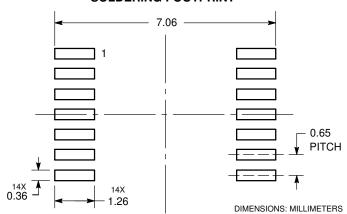

 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W-.

	MILLIN	IETEDO	INCHES	
	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	4.30	4.50	0.169	0.177
С		1.10		0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.70	0.020	0.028
G	0.65	BSC	0.026 BSC	
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
М	0°	8°	0°	8°

PACKAGE DIMENSIONS

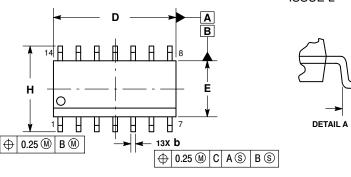
TSSOP-14 **CASE 948G ISSUE C**

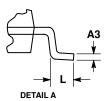

NOTES:

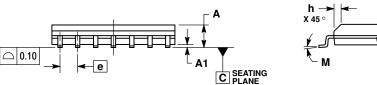
- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT
 EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
 NOT EYCEED 0.25 (0.010) PER SIDE.
- NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
٦	6.40 BSC		0.252	BSC	
М	0 °	8 °	0 °	8 °	


SOLDERING FOOTPRINT*




*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

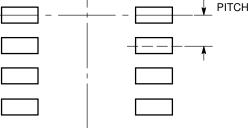
SOIC-14 NB CASE 751A-03 **ISSUE L**

14X 0.58

NOTES:

DETAIL A

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- ASME 114:MI, 1994.


 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	1.27 BSC		BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7°

6.50 14X 1.18 1.27

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81–3–5817–1050

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.