: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Micro-stepping Motor Driver

Introduction

The NCV70628 is a single-chip micro-stepping motor driver with position controller and control/diagnostic interface. It is ready to build dedicated mechatronics solutions connected remotely with a LIN master.

The chip receives positioning instructions through the bus and subsequently drives the motor coils to the desired position. The on-chip position controller is configurable (OTP or RAM) for different motor types, positioning ranges and parameters for speed, acceleration and deceleration. The NCV70628 acts as a slave on the LIN bus and the master can fetch specific status information like actual position, error flags, etc. from each individual slave node.

An integrated sensor-less step-loss detection prevents the positioner from loosing steps and stops the motor when running into stall. This enables silent, yet accurate position calibrations during a referencing run and allows semi-closed loop operation when approaching the mechanical end-stops.

The chip is implemented in I3T50 technology, enabling both high voltage analog circuitry and digital functionality on the same chip. The NCV70628 is fully compatible with the automotive voltage requirements. Due to the technology, the device is especially suited for use in applications with fluctuating battery supplies.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 2 of this data sheet.

PRODUCT FEATURES

Motordriver

- Micro-stepping Technology
- Sensorless Step-loss Detection
- Peak Current up to 800 mA
- Low Temperature Boost Current up to 1100 mA
- Programmable Current Stabilization Phase
- Fixed Frequency PWM Current-control
- Automatic Selection of Fast and Slow Decay Mode
- No External Fly-back Diodes Required
- Compliant with 14 V Automotive Systems

Controller with RAM and OTP Memory

- Position Controller
- Configurable Speeds and Acceleration
- Input to Connect Optional Motion Switch

LIN Interface

- Physical Layer Compliant to LIN rev. 2.2. Data-link Layer Compatible with LIN rev. 2.2
- Field-programmable Node Addresses
- Dynamically Allocated Identifiers
- Diagnostics and Status Information

Protection

- Overcurrent Protection
- Open-circuit Detection
- High Temperature Warning and Management
- Low Temperature Flag
- LIN Bus Short-circuit Protection to Supply and Ground
- Lost LIN Safe Operation
- Enhanced Under Voltage Management

Power Saving

- Powerdown Supply Current < $150 \mu \mathrm{~A}$
- 3.3 V Regulator with Wake-up On LIN Activity

EMI Compatibility

- LIN Bus Integrated Slope Control
- HV Outputs with Slope Control
- This is a $\mathrm{Pb}-$ Free Device

NCV70628

Applications

The NCV70628 is ideally suited for small positioning applications. Target markets include: automotive (headlamp alignment, HVAC, idle control, cruise control), industrial equipment (lighting, fluid control, labeling, process control, XYZ tables, robots...) and building automation (HVAC,
surveillance, satellite dish, renewable energy systems). Suitable applications typically have multiple axes or require mechatronics solutions with the driver chip mounted directly on the motor.

Table 1. ORDERING INFORMATION

Part No.	Peak Current	End Market/Version	Package *	Shipping †
NCV70628MW001R2G	$800 / 1100 \mathrm{~mA}$ (Note 1)	Automotive	QFN32 with step-cut wettable flank (Pb-Free)	$5000 /$ Tape \& Reel

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1. The device boost current. This applies for operation under the thermal warning level only.

MARKING DIAGRAM

1

A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter		Min	Max	Unit
Vbb, Vhw2, Vswi	Supply voltage, hardwired address pin	-0.3	$+40(N o t e 2)$	V
Vlin	Bus input voltage (Note 3)	-40	+40	
$\mathrm{~T}_{J}$	Junction temperature range (Note 4)	-45	V	
$\mathrm{~T}_{\text {stg }}$	Storage temperature range (Note 5)	-55	+175	${ }^{\circ} \mathrm{C}$
Vesd (Note 6)	HBM Electrostatic discharge voltage on LIN pin	-4	${ }^{\circ} \mathrm{C}$	
	HBM Electrostatic discharge voltage on other pins	+4	kV	
	MM Electrostatic discharge voltage on other pins	-2	kV	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
NOTE: A mission profile (Note 4) is a substantial part of the operation conditions; hence the Customer must contact ON Semiconductor in order to mutually agree in writing on the allowed missions profile(s) in the application.
2. For limited time: $\mathrm{V}_{\mathrm{BB}}<0.5 \mathrm{~s}, \mathrm{SWI}$ and HW2 pins $<1.0 \mathrm{~s}$.
3. Maximum allowed voltage between two device pins is 60 V .
4. The circuit functionality is not guaranteed outside the Operating junction temperature range.

A mission profile describes the application specific conditions such as, but not limited to, the cumulative operating conditions over life time, the system power dissipation, the system's environmental conditions, the thermal design of the customer's system, the modes, in which the device is operated by the customer, etc.
5. For limited time up to 100 hours. Otherwise the maximum storage temperature is $85^{\circ} \mathrm{C}$.
6. HBM according to AEC-Q100: EIA-JESD22-A114-B (100 pF via $1.5 \mathrm{k} \Omega$) and MM according to AEC-Q100: EIA-JESD22-A115-A.

Table 3. OPERATING RANGES

Parameter	Min	Max	Unit	
V_{BB}	Supply voltage	+5.5	+29	V
$\mathrm{~T}_{\mathrm{JP}}$	Parametric Operating junction temperature range (Note 7)	-40	+145	${ }^{\circ} \mathrm{C}$
T_{JF}	Functional Operating junction temperature range (Note 8)	-40	+160	${ }^{\circ} \mathrm{C}$

[^0]

Figure 1. Block Diagram

Figure 2. Pinout Diagram

Table 4. PIN DESCRIPTIONS - QFN PACKAGE

Pin No.	Pin Name	Pin Description
1,2	MXP	Positive end of phase X coil
$3,4,21,22$	VBB	Battery voltage supply
$5,7,20$	NC	Not used
6	SWI	Switch input
8	HW0	Bit 0 of LIN-ADD
9	HW1	Bit 1 of LIN-ADD
10	VDD	Internal supply (needs external decoupling capacitor) to GND or V
11	GND	Ground
12	TST1	Test pin (to be tied to ground in normal operation)
13	LIN	LIN-bus connection
14,15	GNDL	Ground
16	HW2	Bit 2 LIN-ADD
17	TST2	Test pin (to be tied to ground in normal operation)
18	TST3	Test pin (to be tied to ground in normal operation)
19	TST4	Test pin (to be tied to ground in normal operation)
23,24	MYN	Negative end of phase Y coil
$25,26,31,32$	GNDPW	Ground
27,28	MYP	Positive end of phase Y coil
29,30	MXN	Negative end of phase X coil

Package Thermal Resistance

The NCV70628 is available in thermally optimized QFN32 package. For the optimizations, the package has an exposed thermal pad which has to be soldered to the PCB ground plane. The ground plane needs thermal vias to
conduct the heat to the bottom layer. Figure 3 gives examples for good power distribution solutions.
The thermal resistances are presented in Table 5: Thermal resistance.

Table 5. THERMAL RESISTANCE

Characteristics	Package	Symbol	Min	Typ	Max
Unit					
Thermal Resistance, Junction-to-Exposed Pad (Note 9)	QFN32	$R_{\theta J P}$	-	14	-

9. Also includes typical solder thickness under the Exposed Pad (EP).

Figure 3. Example of QFN32 PCB Ground Plane Layout. Preferred layout at top and bottom connected with through-hole filled vias

NCV70628

DC Parameters

The DC parameters are guaranteed over junction temperature from -40 to $145^{\circ} \mathrm{C}$ and V_{BB} in the operating range from 5.5 to 29 V , unless otherwise specified. Convention: currents flowing into the circuit are defined as positive.
Table 6. DC PARAMETERS

Symbol	Pin(s)	Parameter	Test Conditions	Min	Typ	Max	Unit
MOTORDRIVER							
$\mathrm{I}_{\mathrm{MS}}-$ max,Peak	MOTXP MOTXN MOTYP MOTYN	Max current through motor coil in normal operation	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$		800		mA
$\mathrm{I}_{\mathrm{MS}}-$ max,RMS		Max rms current through coil in normal operation	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$		570		mA
$\mathrm{I}_{\text {MSabs }}$		Absolute error on coil current (Note 10)	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=145^{\circ} \mathrm{C}$	-10		10	\%
$\mathrm{I}_{\text {MSrel }}$		Matching of X \& Y coil currents	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$	-7	0	7	\%
I_{MS} boost_Peak		Max peak current during booster function	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}, \mathrm{~T}<\mathrm{T}_{\mathrm{tw}}$		1100		mA
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$		On resistance of High side + Low side Driver at $\mathrm{I}_{\text {MSmax }}$	$\mathrm{T}_{\mathrm{j}} \leq 25^{\circ} \mathrm{C}$			1.8	Ω
			$\mathrm{T}_{\mathrm{j}}=145^{\circ} \mathrm{C}$			2.4	Ω

LIN TRANSMITTER (Note 21)

$\mathrm{I}_{\text {bus_off }}$	LIN	Dominant state, driver off	$\mathrm{V}_{\text {bus }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=7 \mathrm{~V}$ \& 18 V	-1			mA
$\mathrm{I}_{\text {bus_off }}$		Recessive state, driver off	$\mathrm{V}_{\text {bus }}=\mathrm{V}_{\text {bat }}, \mathrm{V}_{\text {BB }}=7 \mathrm{~V}$ \& 18 V			10	$\mu \mathrm{A}$
Ibus_off		Recessive state, driver off	$\mathrm{V}_{\mathrm{BB}}=0 \mathrm{~V}$ (Note 10)			10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {bus_lim }}$		Current limitation	$\mathrm{V}_{\mathrm{BB}}=7 \mathrm{~V}$ \& 18 V	40	75	200	mA
$\mathrm{I}_{\text {bus_no_gnd }}$		Control unit disconnected from GND	$\begin{gathered} \mathrm{V}_{\mathrm{BB}}=\mathrm{GND}=18 \mathrm{~V}, \\ \mathrm{~V}_{\text {bus }}=0 \& 18 \mathrm{~V} \end{gathered}$	-1		1	mA
Ibus_no_bat		$\mathrm{V}_{\text {bat }}$ disconnected	$\begin{gathered} \mathrm{V}_{\mathrm{BB}}=\mathrm{GND}=0 \mathrm{~V}, \\ \mathrm{~V}_{\text {bus }}=0 \& 18 \mathrm{~V} \end{gathered}$			100	$\mu \mathrm{A}$
CLIIN		Capacitance on the pin			20	30	pF
$\mathrm{R}_{\text {slave }}$		Pullup resistance	$\mathrm{V}_{\mathrm{BB}}=7 \mathrm{~V}$ \& 18 V	20	30	47	k Ω

LIN RECEIVER (Note 21)

$\mathrm{V}_{\text {bus_dom }}$	LIN	Receiver dominant state	$\mathrm{V}_{\mathrm{BB}}=7 \mathrm{~V}$ \& 18 V	0		0.4 * $\mathrm{V}_{\text {BB }}$	V
$\mathrm{V}_{\text {bus_rec }}$		Receiver recessive state	$\mathrm{V}_{\mathrm{BB}}=7 \mathrm{~V}$ \& 18 V	0.6 * V_{BB}		V_{BB}	V
$V_{\text {bus_hys }}$		Receiver hysteresis (Note 11)	$\mathrm{V}_{\mathrm{BB}}=7 \mathrm{~V}$ \& 18 V	0.05 * VBB		0.175 * VBB	V
$\mathrm{V}_{\text {rec_cnt }}$		Receiver center voltage (Note 12)	$\mathrm{V}_{\mathrm{BB}}=7 \mathrm{~V}$ \& 18 V	0.475 * VBB	0.5 * V_{BB}	0.525 * VBB	V

THERMAL WARNING \& SHUTDOWN

T_{tw}	Thermal warning (Notes 13 and 14)	150	157	165	${ }^{\circ} \mathrm{C}$	
	$\mathrm{T}_{\mathrm{tsd}}$	Thermal shutdown (Note 15)		$\mathrm{T}_{\mathrm{tw}}+10$		${ }^{\circ} \mathrm{C}$
	Tlow	Low temperature warning (Note 15)		$\mathrm{T}_{\mathrm{tw}}-157$		${ }^{\circ} \mathrm{C}$

10. Tested in production for $800 \mathrm{~mA}, 400 \mathrm{~mA}, 200 \mathrm{~mA}$ and 100 mA current settings for both X and Y coil.
11. Vbus_hys $=$ Vth_rec - Vth_dom
12. Vrec_cnt $=1 / 2^{*}($ Vth_dom + Vth_rec $), ~ V t h _d o m: ~ r e c e i v e r ~ t h r e s h o l d ~ o f ~ t h e ~ r e c e s s i v e ~ t o ~ d o m i n a n t ~ L I N ~ b u s ~ e d g e, ~$

Vth_rec: receiver threshold of the dominant to recessive LIN bus edge
13. Parameter guaranteed by trimming relevant OTPs in production.
14. No more than 100 cumulated hours in life time above Tw.
15. Thermal shutdown and low temperature warning are derived from thermal warning. Guaranteed by design.
16. A buffer capacitor of minimum $100 \mu \mathrm{~F}$ is needed between V_{BB} and GND . Short connections to the power supply are recommended.
17. Typical value is valid for the junction temperature $<130^{\circ} \mathrm{C}$
18. Pin $V_{D D}$ must not be used for any external supply
19. The RAM content will not be altered above this voltage.
20. External resistance value seen from pin SWI or HW2, including $1 \mathrm{k} \Omega$ series resistor. For the switch OPEN, the maximum allowed leakage current is represented by a minimum resistance seen from the pin.
21. While LIN is only specified for operation above $7 \mathrm{~V} \mathrm{~V}_{\mathrm{BB}}$, the device can operate LIN at lower voltages down to UV2 voltage level. Under these conditions the LIN specific parameters are not guaranteed.

Table 6. DC PARAMETERS

Symbol	Pin(s)	Parameter	Test Conditions	Min	Typ	Max	Unit

SUPPLY AND VOLTAGE REGULATOR

$\mathrm{V}_{\text {bbotp }}$	V_{BB}	Supply voltage for OTP zapp	g (Note 16)	14.0		18.0	V
UV_{2}		Stop voltage low threshold		5.48	5.90	6.32	V
UV_{3}		Decelerated stop voltage low threshold	UV3Thr[2:0] = 000	5.48	5.90	6.32	V
			UV3Thr[2:0] = 001	5.86	6.30	6.74	V
			UV3Thr[2:0] = 010	6.23	6.70	7.17	V
			UV3Thr[2:0] = 011	6.60	7.10	7.60	V
UV_{3}	$V_{B B}$	Decelerated stop voltage low threshold	UV3Thr[2:0] = 100	6.97	7.50	8.03	V
			UV3Thr[2:0] = 101	7.34	7.90	8.46	V
			UV3Thr[2:0] = 110	7.71	8.30	8.89	V
			UV3Thr[2:0] = 111	8.09	8.70	9.31	V
UV_{1}	V_{BB}	Stop voltage high threshold, Ratio metric coupled to UV3Thr[2:0].	UV3Thr[2:0] = 000	6.18	6.62	7.06	V
			UV3Thr[2:0] = 001	6.60	7.07	7.54	V
			UV3Thr[2:0] = 010	7.02	7.52	8.01	V
			UV3Thr[2:0] = 011	7.44	7.97	8.49	V
			UV3Thr[2:0] = 100	7.86	8.41	8.97	V
			UV3Thr[2:0] = 101	8.28	8.86	9.45	V
			UV3Thr[2:0] = 110	8.70	9.31	9.93	V
			UV3Thr[2:0] = 111	9.12	9.76	10.41	V
Ibat		Total current consumption	Unloaded outputs, $\mathrm{V}_{\mathrm{BB}}=29 \mathrm{~V}$		3.50	10.0	mA
$\mathrm{l}_{\text {bat_s }}$		Sleep mode current consumption (Note 17)	$\mathrm{V}_{\mathrm{BB}}=5.5 \mathrm{~V}$ \& 18 V		65	100	$\mu \mathrm{A}$
V_{DD}	V_{DD}	Regulated internal supply (Note 18)	$5.5 \mathrm{~V}<\mathrm{V}_{\mathrm{BB}}<29 \mathrm{~V}$	3.0	3.3	3.6	V
		Digital supply reset level @ power down (Note 19)				2.85	V
$I_{\text {ddLim }}$		Current limitation	Pin shorted to ground $\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$			80	mA

SWITCH INPUT AND HARDWIRE ADDRESS INPUT

Rt_OfF	$\begin{aligned} & \hline \text { SWI } \\ & \text { HW2 } \end{aligned}$	Switch OPEN resistance (Note 20)		10			k Ω
Rt_on		Switch ON resistance (Note 20)	Switch to GND or V_{BB}			1.9	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {bb_sw }}$		V_{BB} range for guaranteed operation of SWI and HW2		5.5		29	V
l lim _sw $^{\text {d }}$		Current limitation	Short to GND or $\mathrm{V}_{\text {bat }} \mathrm{V}_{\mathrm{BB}}=29 \mathrm{~V}$	20	30	45	mA

HARDWIRED ADDRESS INPUTS AND TEST PIN

$\mathrm{V}_{\text {ihigh }}$	$\begin{aligned} & \text { HW0 } \\ & \text { HW1 } \\ & \text { TST } \end{aligned}$	Input level high	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$	0.75*VDD		V
Vilow		Input level low	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$		0.25*VDD	V
HW hyst		Hysteresis	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$	0.3*VDD	0.5*VDD	V

10. Tested in production for $800 \mathrm{~mA}, 400 \mathrm{~mA}, 200 \mathrm{~mA}$ and 100 mA current settings for both X and Y coil.
11. Vbus_hys $=$ Vth_rec $-V$ th_dom
12. Vrec_cnt $=1 / 2^{*}($ Vth_dom + Vth_rec $), ~ V t h _d o m: ~ r e c e i v e r ~ t h r e s h o l d ~ o f ~ t h e ~ r e c e s s i v e ~ t o ~ d o m i n a n t ~ L I N ~ b u s ~ e d g e, ~$ Vth_rec: receiver threshold of the dominant to recessive LIN bus edge
13. Parameter guaranteed by trimming relevant OTPs in production.
14. No more than 100 cumulated hours in life time above Tw.
15. Thermal shutdown and low temperature warning are derived from thermal warning. Guaranteed by design.
16. A buffer capacitor of minimum $100 \mu \mathrm{~F}$ is needed between V_{BB} and GND. Short connections to the power supply are recommended.
17. Typical value is valid for the junction temperature $<130^{\circ} \mathrm{C}$
18. Pin V_{DD} must not be used for any external supply
19. The RAM content will not be altered above this voltage.
20. External resistance value seen from pin SWI or HW2, including $1 \mathrm{k} \Omega$ series resistor. For the switch OPEN, the maximum allowed leakage current is represented by a minimum resistance seen from the pin.
21. While LIN is only specified for operation above $7 \mathrm{~V} \mathrm{~V}_{\mathrm{BB}}$, the device can operate LIN at lower voltages down to UV2 voltage level. Under these conditions the LIN specific parameters are not guaranteed.

AC Parameters

The AC parameters are guaranteed over junction temperature from -40 to $145^{\circ} \mathrm{C}$ and V_{BB} in the operating range from 5.5 to 29 V , unless otherwise specified. The LIN transmitter and receiver physical layer parameters are compliant to LIN rev. 2.x.

Table 7. AC PARAMETERS

| Symbol | Pin(s) | Parameter | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | POWERUP | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $T_{\text {pu }}$ | | Power-up time | Guaranteed by design | | | 10 |

INTERNAL OSCILLATOR

$\mathrm{f}_{\text {osc }}$		Frequency of internal oscillator	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$	3.6	4.0	4.4	MHz

LIN TRANSMITTER CHARACTERISTICS ACCORDING TO LIN V2.x

D1	LIN	Duty cycle $1=$ t $_{\text {Bus_rec }}$ (min) $/$ ($2 \times \mathrm{t}_{\text {Bit }}$); See Figure 4	$\begin{gathered} \operatorname{THRec}(\max)=0.744 \times \mathrm{V}_{\mathrm{BB}} \\ \mathrm{THDom}(\max)=0.581 \times \mathrm{V}_{\mathrm{BB}} ; \\ \mathrm{V}_{\mathrm{BB}}=7.0 \mathrm{~V} \ldots 18 \mathrm{~V} ; \\ \mathrm{t}_{\mathrm{Bit}}=50 \mu \mathrm{~s} \end{gathered}$	0.396		
D2		Duty cycle $2=t_{\text {Bus_rec(max) }} /$ ($2 \times \mathrm{t}_{\text {Bit }}$); See Figure 4	$\begin{aligned} & \hline \mathrm{THRec}(\min)=0.422 \times \mathrm{V}_{\mathrm{BB}} \\ & \mathrm{THDom}(\min)=0.284 \times \mathrm{V}_{\mathrm{BB}} ; \\ & \mathrm{V}_{\mathrm{BB}}=7.6 \mathrm{~V} \ldots . .18 \mathrm{~V} ; \\ & \mathrm{t}_{\mathrm{Biti}}=50 \mu \mathrm{~s} \end{aligned}$		0.581	
D3		$\begin{aligned} & \text { Duty cycle } 3=t_{\text {Bus_rec(min) }} / \\ & \left(2 \times t_{\text {Bit }}\right) \end{aligned}$	$\begin{aligned} & \mathrm{THRec}(\max)=0.778 \times \mathrm{V}_{\mathrm{BB}} \\ & \text { THDom }(\max)=0.616 \times \mathrm{V}_{\mathrm{BB}} ; \\ & \mathrm{V}_{\mathrm{BB}}=7.0 \mathrm{~V} \ldots 18 \mathrm{~V} ; \\ & \mathrm{t}_{\text {Bit }}=96 \mu \mathrm{~s} \end{aligned}$	0.417		
D4		$\begin{aligned} & \text { Duty cycle } 4=t_{\text {Bus_rec }(\max)} / \\ & \left(2 \times t_{\text {Bit }}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{THRec}(\min)=0.389 \times \mathrm{V}_{\mathrm{BB}} \\ & \mathrm{THDom}(\min)=0.251 \times \mathrm{V}_{\mathrm{BB}} ; \\ & \mathrm{V}_{\mathrm{BB}}=7.6 \mathrm{~V} \ldots . .18 \mathrm{~V} ; \\ & \mathrm{t}_{\mathrm{Bit}}=96 \mu \mathrm{~s} \end{aligned}$		0.590	

LIN RECEIVER CHARACTERISTICS ACCORDING TO LIN V2.x

trx_pdr	LIN	Propagation delay bus dominant to $\mathrm{RxD}=$ low	$\mathrm{V}_{\mathrm{BB}}=7.0 \mathrm{~V} \& 18 \mathrm{~V} ;$ See Figure 4		6	$\mu \mathrm{S}$
trx_pdf		Propagation delay bus recessive to $\mathrm{RxD}=$ high	$\mathrm{V}_{\mathrm{BB}}=7.0 \mathrm{~V} \& 18 \mathrm{~V} ;$ See Figure 4		6	$\mu \mathrm{S}$
trx_sym		Symmetry of receiver propagation delay	trx_pdr - trx_pdf	-2	+2	$\mu \mathrm{S}$

SWITCH INPUT AND HARDWIRE ADDRESS INPUT

T_{sw}	SWI	Scan pulse period (Note 22)	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$		1024	
H HW2	Scan pulse duration (Note 22)	$\mathrm{V}_{\mathrm{BB}}=14 \mathrm{~V}$				

22. Derived from the internal oscillator
23. See SetMotorParam and PWM Requlator

Table 7. AC PARAMETERS

Symbol	Pin(s)	Parameter	Test Conditions	Min	Typ	Max	Unit

MOTORDRIVER

$F_{p w m}$	MOTx	PWM frequency (Note 22)	PWMfreq = 0 (Note 23)	20.6	22.8	25.0	kHz
			PWMfreq = 1 (Note 23)	41.2	45.6	50.0	kHz
$\mathrm{F}_{\text {jit_depth }}$		PWM jitter modulation depth	PWMJen = 1 (Note 23)		10		\%
$\mathrm{T}_{\text {brise }}$		Turn-on transient time	Between 10\% and 90\%		300		ns
$\mathrm{T}_{\text {bfall }}$		Turn-off transient time			300		ns
$\mathrm{T}_{\text {stab }}$		Run current stabilization time (Note 22)	TStab[2:0] = 000	14.4	16	17.6	ms
			TStab[2:0] = 001	19.8	22	24.2	ms
			TStab[2:0] = 010	25.2	28	30.8	ms
			TStab[2:0] = 011	28.8	32	35.2	ms
			TStab[2:0] = 100	34.2	38	41.8	ms
			TStab[2:0] = 101	39.6	44	48.4	ms
			TStab[2:0] = 110	45	50	55	ms
			TStab[2:0] = 111	50.4	56	61.6	ms

SUPPLY

TUV1_deb	VBB	UV1 level debounce time (Note 22)	UV3debT $=0$		256		$\mu \mathrm{~s}$

22. Derived from the internal oscillator
23. See SetMotorParam and PWM Regulator

Figure 4. Timing Diagram for AC Characteristics According to LIN 2.x

Figure 5. Typical Application

Table 8. APPLICATION DIAGRAM COMPONENT VALUES

Comp	Function	Typ. Value	Tol.	Units	Voltage / Power Dissipation
R_{1}	Switch inout protection	1	$\pm 5 \%$	$\mathrm{k} \Omega$	250 mW
R_{2}	Addressing protection	1	$\pm 5 \%$	$\mathrm{k} \Omega$	250 mW
C_{1}	Switch inout filter	2.7	$\pm 20 \%$	nF	50 V
C_{2}	Addressing inout filter	2.7	$\pm 20 \%$	nF	50 V
C_{3}	High voltage supply decoupling	100	$\pm 20 \%$	nF	50 V
C_{4}	High voltage supply decoupling	100	$\pm 20 \%$	nF	50 V
C_{6}	Low voltage supply decoupling	100	$\pm 20 \%$	nF	10 V
C_{7}	High voltage supply filter	100	$\pm 20 \%$	$\mu \mathrm{~F}$	50 V
C_{8}	High voltage supply decoupling	100	$\pm 20 \%$	nF	50 V
C_{9}	Low voltage supply stabilization	1	$\pm 20 \%$	$\mu \mathrm{~F}$	
C_{10}	EMC filtering capacitors	1	$\pm 20 \%$	nF	

NOTES: All resistors are $\pm 5 \%, 1 / 4 \mathrm{~W}$
$\mathrm{C}_{1}, \mathrm{C}_{2}$ minimum value is 2.7 nF , maximum value is 10 nF
Depending on the application, the ESR value and working voltage of C_{7} must be carefully chosen C_{3} and C_{4} must be close to pins V_{BB} and coupled GND directly
C_{9} must be a ceramic capacitor to assure low ESR
C_{10} is placed for system level EMC reasons; value depends on EMC requirements of the application, recommended 200 pF X_{1} is placed for system level EMC and ESD reasons. Use e.g. BLM18AG601SN1D 600 OHM or resistor 50Ω

Stepping Modes

One of four possible stepping modes can be programmed:

- Half-stepping
- $1 / 4$ micro-stepping
- $1 / 8$ micro-stepping
- $1 / 16$ micro-stepping

Maximum Velocity

For each stepping mode, the maximum velocity Vmax can be programmed to 16 possible values given in the table below.
The accuracy of Vmax is derived from the internal oscillator. Under special circumstances it is possible to change the Vmax parameter while a motion is ongoing. All 16 entries for the Vmax parameter are divided into four groups. When changing Vmax during a motion the application must take care that the new Vmax parameter stays within the same group.

Table 9. MAXIMUM VELOCITY SELECTION TABLE

Vmax Index		Vmax (full step/s)	Group	Stepping Mode			
Hex	Dec			Half-stepping (half-step/s)	$1 /$ th $^{\text {th }}$Micro-stepping (micro-step $/ \mathrm{s}$)	$1 / 8^{\text {th }}$ Micro-stepping (micro-step/s)	$1 / 16^{\text {th }}$ Micro-stepping (micro-step/s)
0	0	99	A	197	395	790	1579
1	1	136	B	273	546	1091	2182
2	2	167		334	668	1335	2670
3	3	197		395	790	1579	3159
4	4	213		425	851	1701	3403
5	5	228		456	912	1823	3647
6	6	243		486	973	1945	3891
7	7	273	C	546	1091	2182	4364
8	8	303		607	1213	2426	4852
9	9	334		668	1335	2670	5341
A	10	364		729	1457	2914	5829
B	11	395		790	1579	3159	6317
C	12	456		912	1823	3647	7294
D	13	546	D	1091	2182	4364	8728
E	14	729		1457	2914	5829	11658
F	15	973		1945	3891	7782	15564

Minimum Velocity

Once the maximum velocity is chosen, 16 possible values can be programmed for the minimum velocity Vmin. The table below provides the obtainable values in full-step/s.

The accuracy of Vmin is derived from the internal oscillator. It is not recommended to change the Vmin while a motion is ongoing.

Table 10. OBTAINABLE VALUES IN FULL-STEP/s FOR THE MINIMUM VELOCITY

Vmin Index		Vmax Factor	Vmax (Full-step/s)																
		A	B						C						D				
Hex	Dec		99	136	167	197	213	228	243	273	303	334	364	395	456	546	729	973	
0	0		1	99	136	167	197	213	228	243	273	303	334	364	395	456	546	729	973
1	1	1/32	3	4	5	6	6	7	7	8	8	10	10	11	13	15	19	27	
2	2	2/32	6	8	10	11	12	13	14	15	17	19	21	23	27	31	42	57	
3	3	3/32	9	12	15	18	19	21	22	25	27	31	32	36	42	50	65	88	
4	4	4/32	12	16	20	24	26	28	30	32	36	40	44	48	55	65	88	118	
5	5	5/32	15	21	26	31	32	35	37	42	46	51	55	61	71	84	111	149	
6	6	6/32	18	25	31	36	39	42	45	50	55	61	67	72	84	99	134	179	
7	7	7/32	21	30	36	43	46	50	52	59	65	72	78	86	99	118	156	210	
8	8	8/32	24	33	41	49	52	56	60	67	74	82	90	97	113	134	179	240	
9	9	9/32	28	38	47	55	59	64	68	76	84	93	101	111	128	153	202	271	
A	10	10/32	31	42	51	61	66	71	75	84	93	103	113	122	141	168	225	301	
B	11	11/32	34	47	57	68	72	78	83	93	103	114	124	135	156	187	248	332	
C	12	12/32	37	51	62	73	79	85	91	101	113	124	135	147	170	202	271	362	
D	13	13/32	40	55	68	80	86	93	98	111	122	135	147	160	185	221	294	393	
E	14	14/32	43	59	72	86	93	99	106	118	132	145	158	172	198	237	317	423	
F	15	15/32	46	64	78	93	99	107	113	128	141	156	170	185	214	256	340	454	

NOTES: The Vmax factor is an approximation.
In case of motion without acceleration (AccShape =1) the length of the steps $=1 / \mathbf{V m i n}$. In case of accelerated motion
(AccShape $=0$) the length of the first step is shorter than $1 / \mathbf{V m i n}$ depending of $\mathbf{V m i n}, ~ V m a x ~ a n d ~ A c c . ~$

Acceleration and Deceleration

Sixteen possible values can be programmed for Acc (acceleration and deceleration between Vmin and Vmax). The table below provides the obtainable values in full-step/s ${ }^{2}$. One observes restrictions for some combinations of acceleration index and maximum speed. It
is not recommended to change the Acc value while a motion is ongoing.

The accuracy of Acc is derived from the internal oscillator.

Table 11. ACCELERATION AND DECELERATION SELECTION TABLE

Vmax (FS/s) \rightarrow		99	136	167	197	213	228	243	273	303	334	364	395	456	546	729	973
\downarrow Acc Index																	
Hex	Dec	Acceleration (Full-step/s ${ }^{\text {2 }}$)															
0	0	49							106						473		
1	1	218													735		
2	2	1004															
3	3	3609															
4	4	6228															
5	5	8848															
6	6	11409															
7	7	13970															
8	8	16531															
9	9	14785	19092														
A	10		21886														
B	11		24447														
C	12		27008														
D	13		29570														
E	14		29570							34925							
F	15									40047							

The formula to compute the number of equivalent full-steps during acceleration phase is:

$$
\text { Nstep }=\frac{V \max ^{2}-V \min ^{2}}{2 \times \mathrm{Acc}}
$$

Positioning

The position programmed in commands SetPosition is given as a number of (micro-) steps. According to the chosen stepping mode, the internal position words is aligned
as described in the table below. The Secure Position is given in a number of two Full Steps. The position data is aligned automatically.

Table 12. POSITION WORD ALIGNMENT

Stepping Mode	Position Word: Pos [15: 0]																Shift
$1 / 16^{\text {th }}$	S	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	LSB	No shift
$1 / 8^{\text {th }}$	S	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	LSB	0	1-bit left $\Leftrightarrow \times 2$
$1 / 4^{\text {th }}$	S	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	LSB	0	0	2-bit left $\Leftrightarrow \times 4$
Half-stepping	S	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	LSB	0	0	0	3-bit left $\Leftrightarrow \times 8$
Position Short	S	S	S	B9	B8	B7	B6	B5	B4	B3	B2	B1	LSB	0	0	0	No shift
Secure Position	S	B9	B8	B7	B6	B5	B4	B3	B2	B1	LSB	0	0	0	0	0	No shift

NOTES: LSB: Least Significant Bit
S: Sign bit

NCV70628

Position Ranges

A position is coded by using the binary two's complement format. According to the positioning commands used and to the chosen stepping mode, the position range will be as shown in the following table.

Table 13. POSITION RANGE

Command	Stepping Mode	Position Range	Full Range Excursion	Number of Bits in micro stepping
SetPosition	Half-stepping	-4096 to +4095	8192 half-steps	13
	$1 / 4^{\text {th }}$ micro-stepping	-8192 to +8191	16384 micro-steps	14
	$1 / 8^{\text {th }}$ micro-stepping	-16384 to +16383	32768 micro-steps	15
	$1 / 16^{\text {th }}$ micro-stepping	-32768 to +32767	65536 micro-steps	16

When using the command SetPosition, although coded on 16 bits, the position word is shifted to the left by a certain number of bits, according to the stepping mode.

Secure Position

A secure position can be programmed. It is mapped to the positioned full range but coded in 11-bits, thus having a lower resolution than normal positions, as shown in the following table. See also command GotoSecurePosition and LIN lost behavior.

Table 14. SECURE POSITION

Stepping Mode	Secure Position Resolution
Half-stepping	4 half-steps
$1 / 4^{\text {th }}$ micro-stepping	8 micro-steps $\left(1 / 4^{\text {th }}\right)$
$1 / 8^{\text {th }}$ micro-stepping	16 micro-steps $\left(1 / 8^{\text {th }}\right)$
$1 / 16^{\text {th }}$ micro-stepping	32 micro-steps $\left(1 / 16^{\text {th }}\right)$

Important

NOTES: For the FailSafe functionality and SetDualPosition command, the secure position is disabled in case the programmed value has the code " 10000000000 " (0×400 or most negative position). For the GotoSecurePosition command there is no disabling possible. By receiving this command the secure positioning is always executed, even when the secure position has the value 0×400.

The resolution of the secure position is limited to 9 bit at start-up. The OTP register is copied in RAM as illustrated below. The RAM bits SecPos1 and SecPos0 are set to 0 .

Shaft

A shaft bit, which can be programmed in OTP or with command SetMotorParam, defines whether a positive motion is a clockwise (CW) or counter-clockwise rotation (CCW) (an outer or an inner motion for linear actuators):

- Shaft $=0 \Rightarrow$ MOTXP is used as positive pin of the X coil, while MOTXN is the negative one.
- Shaft $=1 \Rightarrow$ opposite situation

Structural Description

Refer to the Block Diagram in Figure 1.

Stepper Motordriver

The Motordriver receives the control signals from the control logic. The main features are:

- Two H-bridges, designed to drive a stepper motor with two separated coils. Each coil (X and Y) is driven by one H -bridge, and the driver controls the currents flowing through the coils. The rotational position of the rotor, in unloaded condition, is defined by the ratio of current flowing in X and Y . The torque of the stepper motor when unloaded is controlled by the magnitude of the currents in X and Y .
- The control block for the H -bridges, including the PWM control, the synchronous rectification and the internal current sensing circuitry.
- Two pre-scale 4-bit DAC's to set the maximum magnitude of the current through X and Y .
- Two DAC's to set the correct current ratio through X and Y.
- A boost function that increases the current during cold conditions.
Battery voltage monitoring is also performed by this block, which provides the required information to the control logic part. The same applies for detection and reporting of an electrical problem that could occur on the coils.

Control Logic (Position Controller and Main Control)

The control logic block stores the information provided by the LIN interface (in a RAM or an OTP memory) and digitally controls the positioning of the stepper motor in terms of speed and acceleration, by feeding the right signals to the motor driver state machine.

It will take into account the successive positioning commands to properly initiate or stop the stepper motor in order to reach the set point in a minimum time.

It also receives feedback from the motor driver part in order to manage possible problems and decide on internal actions and reporting to the LIN interface.

Motion Detection

Motion detection is based on the back-emf generated internally in the running motor. When the motor is blocked, e.g. when it hits the end position, the velocity, and as a result also the generated back-emf, is disturbed. The NCV70628 senses the back-emf and compares the value with an independent threshold level. If the back-emf becomes lower than the threshold, the running motor is stopped.

LIN Interface

The LIN interface implements the physical layer and the MAC and LLC layers according to the OSI reference model. It provides and gets information to and from the control logic block, in order to drive the stepper motor, to configure the way this motor must be driven, or to get information such as actual position or diagnosis (temperature, battery voltage, electrical status...) and pass it to the LIN master node.

Miscellaneous

The NCV70628 also contains the following:

- An internal oscillator, needed for the LIN protocol handler as well as the control logic and the PWM control of the motor driver.
- An internal trimmed voltage source for precise referencing.
- A protection block featuring a thermal shutdown and a power-on-reset circuit.
- A 3.3 V regulator (from the battery supply) to supply the internal logic circuitry.

Functions Description

This chapter describes the following functional blocks in more detail:

- Position controller
- Main control and register, OTP memory + ROM
- Motor driver

The Motion detection and LIN controller are discussed in separate chapters.

NCV70628

Position Controller

Positioning and Motion Control

A positioning command will produce a motion as illustrated in Figure 6. A motion starts with an acceleration phase from minimum velocity (Vmin) to maximum velocity (Vmax) and ends with a symmetrical deceleration. This is
defined by the control logic according to the position required by the application and the parameters programmed by the application during the configuration phase. The current in the coils is also programmable.

Figure 6. Position and Motion Control

Table 15. POSITION RELATED PARAMETERS

Parameter	
Pmax - Pmin	Reference
Zero Speed Hold Current	See Ihold
Maximum Current	See Irun
Acceleration and Deceleration	See Acceleration and Deceleration
Vmin	See Minimum Velocity
Vmax	See Maximum Velocity
Stabilization Time	See Stabilization Time

Different positioning examples are shown in the next table.

Table 16. POSITIONING EXAMPLES
Short motion.

New positioning command in same dir-
ection, shorter or longer, while a motion
is running at maximum velocity.

New positioning command in same dir-
ection while in deceleration phase
(Note 24)
Note: there is no wait time between the
deceleration phase and the new acceler-
ation phase.

New positioning command in reverse
direction while motion is running at max-
imum velocity.

New velocity Vmax programming while
motion is running.
New positioning command in reverse

24. Reaching the end position is always guaranteed, however velocity rounding errors might occur. The device is automatically compensating the position error. The velocity rounding error will be removed at Vmin (e.g. at end of acceleration or when $\mathrm{AccShape}=1$) by a corrective motion action.

Dual Positioning

A SetDualPosition command allows the user to perform a positioning using two different velocities. The first motion is done with the specified Vmin and Vmax velocities in the SetDualPosition command, with the acceleration (deceleration) parameter already in RAM, to a position Pos1[15:0] also specified in SetDualPosition.

Then a second relative motion to a physical position Pos1[15:0] + Pos2[15:0] is done at the specified Vmin velocity in the SetDualPosition command (no
acceleration). Once the second motion is achieved, the ActPos register is reset to zero, whereas TagPos register is cleared (or set to SecPos value when Secure Position is enabled).

When the Secure position is enabled, after the dual positioning, the secure positioning is executed. The figure below gives a detailed overview of the dual positioning function. After the dual positioning is executed an internal flag is set to indicate the NCV70628 is referenced.

Figure 7. Dual Position

Remark: This operation cannot be interrupted or influenced by any further command unless the occurrence of the conditions driving to a motor shutdown or by a HardStop command. Sending a SetDualPosition command while a motion is already ongoing is not recommended.
25. The priority encoder is describing the management of states and commands.
26. A DualPosition sequence starts by setting TagPos buffer register to SecPos value, provided secure position is enabled otherwise TagPos is reset to zero. If a SetPosition command is issued during a DualPosition sequence, it will be kept in the position buffer memory and executed afterwards. This applies also for the commands Sleep, SetPosParam and GotoSecurePosition.
27. Commands such as GetActualPos or GetFullStatus will be executed while a Dual Positioning is running. This applies also for all LIN standard diagnostic and configuration frames.
28. The Pos1, Pos2, Vmax and Vmin values programmed in a SetDualPosition command apply only for this sequence. All other motion parameters are used from the RAM registers (programmed for instance by a former SetMotorParam command). After the DualPosition motion is completed, the former Vmin and Vmax become active again.
29. Commands ResetPosition, SetDualPosition, and SoftStop will be ignored while a DualPosition sequence is ongoing, and will not be executed afterwards.
30. Recommendation: a SetMotorParam command should not be sent during a SetDualPosition sequence: all the motion parameters defined in the command, except Vmin and Vmax, become active immediately.
31. When during the Dual positioning an under voltage UV2 or UV3 happens, the motor will stop (hardstop for UV2 or softstop for UV3). The device will go into the under-voltage and autarkic operational handler function (refer to battery voltage management and autarkic function). Especially for the dual positioning it should be stated that after passing the UV1 level the motion is continued with the parameters Vmax, Vmin and Acceleration from RAM registers and not from the SetDualPosition command.

Position Periodicity

Depending on the stepping mode the position can range from -4096 to +4095 in half-step to -32768 to +32767 in $1 / 16$ th micro-stepping mode. One can project all these positions lying on a circle. When executing the command SetPosition, the position controller will set the movement direction in such a way that the traveled distance is minimal.

The figure below illustrates that the moving direction going from ActPos $=+30000$ to TagPos $=-30000$ is clockwise.

If a counter clockwise motion is required in this example, several consecutive SetPosition commands can be used.

Figure 8. Motion Direction is Function of the Difference between ActPos and TagPos

Hardwired Address HW2

In the drawing below, a simplified schematic diagram is shown of the HW2 comparator circuit.

The HW2 pin is sensed via 2 switches. The DriveHS and DriveLS control lines are alternatively closing the top and bottom switch connecting HW2 pin with a current to resistor converter. Closing $\mathrm{S}_{\mathrm{TOP}}($ DriveHS $=1$) will sense a current
to GND. In that case the top $I \rightarrow R$ converter output is low, via the closed passing switch SPASS_T $^{\text {this signal is fed to the }}$ " R " comparator which output HW2_Cmp is high. Closing bottom switch $\mathrm{S}_{\mathrm{BOT}}$ (DriveLS =1) will sense a current to $\mathrm{V}_{\text {BAT }}$. The corresponding I $\rightarrow \mathrm{R}$ converter output is low and via SPASS_B fed to the comparator. The output HW2_Cmp will be high.

Figure 9.
3 cases can be distinguished (see also Figure 9 above):

- HW2 is connected to ground: R2GND or drawing 1
- HW2 is connected to VBAT: R2VBAT or drawing 2
- HW2 is floating: OPEN or drawing 3

Table 17. STATE DIAGRAM OF THE HW2 COMPARATOR

Previous State	DriveLS	DriveHS	HW2_Cmp	New State	Condition	Drawing
Float	1	0	0	Float	R2GND or OPEN	1 or 3
Float	1	0	1	High	R2VBAT	2
Float	0	1	0	Float	R2VBAT or OPEN	2 or 3
Float	0	1	1	Low	R2GND	1
Low	1	0	0	Low	R2GND or OPEN	1 or 3
Low	1	0	1	High	R2VBAT	2
Low	0	1	0	Float	R2VBAT or OPEN	2 or 3
Low	0	1	1	Low	R2GND	1
High	1	0	0	Float	R2GND or OPEN	1 or 3
High	1	0	1	High	R2VBAT	2
High	0	1	0	High	R2VBAT or OPEN	2 or 3
High	0	1	1	Low	R2GND	1

The logic is controlling the correct sequence in closing the switches and in interpreting the $32 \mu \mathrm{~s}$ debounced HW2_Cmp output accordingly. The output of this small state-machine is corresponding to:

- High or address $=1$
- Low or address $=0$
- Floating

Figure 10. Timing Diagram Showing the Change in State for HW2 Comparator

R2VBAT

A resistor is connected between VBAT and HW2. Every $1024 \mu \mathrm{~s} \mathrm{~S}_{\mathrm{BOT}}$ is closed and a current is sensed. The output of the $I \Rightarrow R$ converter is low and the HW2_Cmp output is high. Assuming the previous state was floating, the internal logic will interpret this as a change of state and the new state will be high (see also Table 17). The next time $\mathrm{S}_{\mathrm{BOT}}$ is closed the same conditions are observed. The previous state was high so based on Table 17 the new state remains unchanged. This high state will be interpreted as HW2 address $=1$.

OPEN

In case the HW2 connection is lost (broken wire, bad contact in connector) the next time $\mathrm{S}_{\mathrm{BOT}}$ is closed, this will be sensed. There will be no current, the output of the corresponding $\mathrm{I} \Rightarrow \mathrm{R}$ converter is high and the HW2_Cmp will be low. The previous state was high. Based in Table 17 one can see that the state changes to float. This will trigger
a motion to secure position after a debounce time of 64 ms , which prevents false triggering in case of microinterruptions of the power supply.

R2GND

If a resistor is connected between HW2 and the GND, a current is sensed every 1024μ s when $\mathrm{S}_{\text {TOP }}$ is closed. The output of the top $I \Rightarrow R$ converter is low and as a result the HW2_Cmp output switches to high. Again based on the stated diagram in Table 17 one can see that the state will change to Low. This low state will be interpreted as HW2 address $=0$.

External Switch SWI

As illustrated in Figure 11 the SWI comparator is almost identical to HW2. The major difference is in the limited number of states. Only open or closed is recognized leading to respectively $\mathrm{ESW}=0$ and $\mathrm{ESW}=1$.

Figure 11. Simplified Schematic Diagram of the SWI Comparator

As illustrated in the drawing above, a change in state is always synchronized with DriveHS or DriveLS. The same synchronization is valid for updating the internal position register. This means that after every current pulse (or closing of $\mathrm{S}_{\text {TOP }}$ or $\mathrm{S}_{\mathrm{BOT}}$) the state of the position switch together with the corresponding position is memorized.

The GetActualPos command reads back the <ActPos> register and the status of ESW. In this way the master node may get synchronous information about the state of the switch together with the position of the motor. See Table 18 below.

Table 18. GetActualPos READING FRAME

Byte	Content	Structure							
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	PID	PID(6)							
1	Data 1	ActPos[7:0]							
2	Data 2	ActPos[15:8]							
3	Data 3	ESW	StepLoss	EIDef	UV	TSD	TW	Tinfo[1:0]	
4	Data 4	Motion[2:0]			Stall	LIN_E	UV2	UV3	VddReset
5	Checksum	Enhanced Checksum							

Figure 12. Timing Diagram Showing the Change in States for SWI Comparator

Main Control and Register, OTP memory + ROM

Power-up Phase

Power-up phase of the NCV70628 will not exceed 10 ms . After this phase, the NCV70628 is in standby mode, ready to receive LIN messages and execute the associated commands. After power-up, the registers and flags are in the reset state, while some of them are being loaded with the OTP memory content (see Table 21: RAM Registers).

Reset

After power-up, or after a reset occurrence (e.g. a micro-cut on pin V_{BB} has made V_{DD} to go below VddReset level), the H -bridges will be in high-impedance mode, and the registers and flags will be in a predetermined position. This is documented in Table 21: RAM Registers and Table 22: Flags Table.

Soft-stop

A soft-stop is an immediate interruption of a motion, but with a deceleration phase. At the end of this action, the register <TagPos> is loaded with the value contained in register <ActPos>, (see Table 21: Ram Registers). The circuit is then ready to execute a new positioning command, provided thermal and electrical conditions allow for it.

Sleep Mode

When entering sleep mode, the stepper-motor can be driven to its secure position. After which, the circuit is
completely powered down, apart from the LIN receiver, which remains active to detect a dominant state on the bus. In case sleep mode is entered while a motion is ongoing, a transition will occur towards secure position as described in Positioning and Motion Control provided <SecPos> is enabled. Otherwise, <SoftStop> is performed.

Sleep mode can be entered in the following cases:

- The circuit receives a LIN go to sleep command (frame with identifier 0x3C and first data byte containing $0 x 00$, as required by LIN specification rev. 2.2 and <SleepEn> bit $=1$. See also Sleep in the LIN Application Command section.
- In case the <SleepEn> bit = 1 and the LIN bus remains inactive (or is lost) during more than 4.46 s , a time-out signal switches the circuit to sleep mode.
The circuit will return to normal mode if a valid LIN frame is received. During sleep mode the digital part of NCV70628 is powered off so all internal registers and LIN related settings are cleared. Pre-load of internal registers from OTPs is executed after wake-up from sleep mode. For more information see LIN wake-up functionality description.

Thermal Shutdown Mode

When thermal shutdown occurs, the circuit performs a <SoftStop> command and goes to motor shutdown mode (see Figure 13: State Diagram Temperature Management).

Temperature Management

The NCV70628 monitors temperature by means of two thresholds and one shutdown level, as illustrated in the state diagram and illustration of Figure 13: State Diagram Temperature Management below. The only condition to
reset flags <TW> and <TSD> (respectively thermal warning and thermal shutdown) is to be at a temperature lower than Ttw and to get the occurrence of a Getstatus or a GetFullstatus LIN frame.

Figure 13. State Diagram Temperature Management

Figure 14. Illustration of Thermal Management Situation

Under-Voltage Condition and Autarkic Functionality

Battery Voltage Management

The NCV70628 monitors the V_{BB} voltage by means of two under voltage threshold UV3 and UV2 and one shutdown level. The only condition to go back to normal operation is to recover by a $V_{B B}$ voltage higher than UV1. The flags <UV2> and <UV3> can only be cleared by receiving the header of a GetStatus or a GetFullStatus command after the V_{BB} voltage higher than UV1.

The UV3 and UV1 levels are programmable by a LIN command. There are 8 levels available for the UV3 threshold voltage. The UV1 level is ratio metric coupled with UV3. UV2 has only a fixed threshold level. Refer to the DC parameter table for the different under voltage levels.

When the battery voltage drops below UV3, the <UV3> flag will be set and a Soft Stop is performed to stop the motion. If during this decelerated motion the battery voltage does not go under the UV2 level, the NCV70628 will go to state <StoppedUnder UV1>" and the original Target Position (TagPos) is saved while the motor is kept in position by the Hold current*. As soon as the V_{BB} voltage rises above the UV1 level the NCV70628 will continue the motion the (TagPos) and will go to the normal <Stopped> state afterwards.

When during a motion the battery voltage drops below the UV2 level, the NCV70628 will stop immediately by a Hard Stop and directly enters the state <HardUnder> followed by <ShutUnder>. The motor is placed in HiZ and the flags <UV2> and <Steploss> are set (see Figure 15).
Note*: In this situation the <Steploss> flag is not set.

Remarks:

If V_{BB} voltage drops below the UV2 level while the NCV70628 is in the motion "stabilization phase", only the <UV2> flag is set; the <Steploss> flag is not set.

When the NCV70628 is in a stopped states <Stopped> or <StoppedUnder UV1> and the V_{BB} voltage drops below UV2 level, the device will directly go to the state <ShutUnder>, but does not raise the <Stepploss> flag.

At the UV3 comparator output, there is implemented an unsymmetrical debouncer which will filter immediate actions during unwanted spikes at the battery supply. For transitions, when supply voltage V_{BB} drops below UV3 level, a 32μ s debouncer is implemented that is derived from the internal oscillator. For transitions when supply voltage
$\mathrm{V}_{\text {BB }}$ rises above UV1 level, the NCV70628 reacts after 256μ s debounce time typically (OTP bit UV3debT is not set). This time is increased to 2 ms when OTP bit UV3debT is zapped to " 1 ". Zapping can be done via the SetOTPparam command.

Autarkic Function

From above described states the device can enter the state <ShutUnder>. When in the <ShutUnder> state, the device will perform the Autarkic Function:

- If in this state V_{BB} becomes > UV1 within 15 seconds, the NCV70628 still will resume the motion to the saved (TagPos) and will go to the <Stopped> state afterwards. It accepts updates of the target position by means of the commands SetPosition, SetPosition2motors, SetPosParam and GotoSecurePosition, even if the <UV2> flag and <Steploss> flags are NOT cleared.
- If however the V_{BB} voltage remains below UV2 level voltage level for more than 15 seconds, the device will enter <Shutdown> state and the target position is overwritten by Actual Position. This state can be exited only if V_{BB} is > UV1 voltage level and an incoming command GetStatus or GetFullStatus is received.

Important Notes:

1. In the case of Autarkic positioning, care needs to be taken because accumulated steploss can cause a significant deviation between physical and stored actual position.
2. The SetDualPosition command will only be executed after clearing the $<\mathrm{UV} 2>$ and <Steploss> flags.
3. RAM reset occurs when Vdd < VddReset (digital Power-On-Reset level).
4. The Autarkic function remains active as long as $\mathrm{V}_{\mathrm{DD}}>$ VddReset.
5. LIN timeout is not being monitored in Autarkic mode in <ShutUnder> state to avoid LIN lost procedure activation in Autarkic mode or right after Vdd > UV1 (LIN communication is disabled when Vdd < UV2).

NCV70628

OTP Register

OTP Memory Structure

The table below shows how the parameters to be stored in the OTP memory are located.
Table 19. OTP MEMORY STRUCTURE

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0×00	TSD2	TSD1	TSD0	IREF4	IREF3	IREF2	IREF1	IREF0
0×01	SecPosA	ADM	BG4	BG3	BG2	BG1	BG0	TSD3
0×02	AbsThr3	AbsThr2	AbsThr1	AbsThr0	PA3	PA2	PA1	PA0
0×03	Irun3	Irun2	Irun1	Irun0	Ihold3	Ihold2	Ihold1	Ihold0
0×04	Vmax3	Vmax2	Vmax1	Vmax0	Vmin3	Vmin2	Vmin1	Vmin0
0×05	SecPos10	SecPos9	SecPos8	Shaft	Acc3	Acc2	Acc1	Acc0
0×06	SecPos7	SecPos6	SecPos5	SecPos4	SecPos3	SecPos2	Failsafe	SleepEn
0×07	UV3debT	UV3Thr2	UV3Thr1	UV3Thr0	StepMode1	StepMode0	LOCKBT	LOCKBG
0×08	SecPos10A	SecPos9A	SecPos8A	OSC4	OSC3	OSC2	OSC1	OSC0
0×09	SecPos7A	SecPos6A	SecPos5A	SecPos4A	SecPos3A	SecPos2A	FailsafeA	SleepEnA

Parameters stored at address 0x00[6:0], 0x01[5:0], $0 x 08[4: 0]$ and bit <LOCKBT> are already programmed in the OTP memory at circuit delivery. They correspond to the calibration of the circuit and are just documented here as an indication.

Each OTP bit is at ' 0 ' when not zapped. Zapping a bit will set it to ' 1 '. Thus only bits having to be at ' 1 ' must be zapped. Zapping of a bit already at ' 1 ' is disabled. Each OTP byte will be programmed separately (see command SetOTPparam). Once OTP programming is completed, bit <LOCKBG> can be zapped to disable future zapping, otherwise any OTP bit at ' 0 ' could still be zapped by using a SetOTPparam command.

Table 20. OTP OVERWRITE PROTECTION

Lock Bit	Protected Bytes
LOCKBT (factory zapped before delivery)	$0 \times 00[6: 0], 0 \times 01[5: 0], 0 \times 08[4: 0]$
LOCKBG	0×00 to 0×09

The command used to load the application parameters via the LIN bus in the RAM prior to an OTP Memory programming is SetMotorParam. This allows for a functional verification before using a SetOTPparam command to program and zap separately one OTP memory byte. A GetOTPparam command issued after each SetOTPparam command allows verifying the correct byte zapping.
Note: Zapped bits will become active only after a power cycle. After programming the LIN bits the power cycle has to be performed first to guarantee further communication with the device at the new address.

Application Parameters Stored in OTP Memory

Except for the physical address <PA[3:0]> these parameters, although programmed in a non-volatile memory can still be overwritten in RAM by a LIN SetMotorParam writing operation.

PA[3:0] In combination with HW[2:0] it forms the physical address NAD[7:0] of the stepper-motor. Up to 125 stepper-motors can theoretically be connected to the same LIN bus.
AbsThr[3:0] Absolute threshold used for the motion detection

Index	AbsThr				AbsThr level (V) (*)
0	0	0	0	0	Disable
1	0	0	0	1	0.6
2	0	0	1	0	1.3
3	0	0	1	1	1.9
4	0	1	0	0	2.6
5	0	1	0	1	3.2
6	0	1	1	0	3.9
7	0	1	1	1	4.5
8	1	0	0	0	5.1
9	1	0	0	1	5.8
A	1	0	1	0	6.4
B	1	0	1	1	7.1
C	1	1	0	0	7.7
D	1	1	0	1	8.3
E	1	1	1	0	9.0
F	1	1	1	1	9.6

${ }^{(*)}$ Not tested in production. Values are approximations.

UV3Thr [2:0] Under voltage threshold voltage for UV3 and UV1.

Index	UV3Thr			UV3 Level	UV1 Level
0	0	0	0	5.90	6.62
1	0	0	1	6.30	7.07
2	0	1	0	6.70	7.52
3	0	1	1	7.10	7.97
4	1	0	0	7.50	8.41
5	1	0	1	7.90	8.86
6	1	1	0	8.30	9.31
7	1	1	1	8.70	9.76

Irun[3:0] Current amplitude value to be fed to each coil of the stepper-motor. The table below provides the 16 possible values for <IRUN>.

Index	Irun				Run Current $(m A)$	Run Boost Current (mA)
0	0	0	0	0	59	81
1	0	0	0	1	71	98
2	0	0	1	0	84	116
3	0	0	1	1	100	138
4	0	1	0	0	119	164
5	0	1	0	1	141	194
6	0	1	1	0	168	231
7	0	1	1	1	200	275
8	1	0	0	0	238	327
9	1	0	0	1	283	389
A	1	0	1	0	336	462
B	1	0	1	1	400	550
C	1	1	0	0	476	655
D	1	1	0	1	566	778
F	1	1	1	0	673	925
	1	1	1	1	800	1100

Shaft This bit distinguishes between a clock-wise or counter-clock-wise rotation.

SecPos[10:2] Secure Position of the stepper-motor. This is the position to which the motor is driven in case of a LIN communication loss or when the LIN error-counter overflows. If <SecPos[10:2]〉 = "100 $000000 \mathrm{xx} "$, secure positioning is disabled. The stepper motor will be kept in the position occupied at the moment these events occur (does not affect GoToSecurePosition command).
Note: The Secure Position is coded on 11 bits only, providing actually the most significant bits of the position, the non coded least significant bits being set to ' 0 '. The Secure

Ihold[3:0] Hold current for each coil of the stepper-motor. The table below provides the 16 possible values for <IHOLD>.

Index	Ihold				Hold Current (mA)	Hold Boost Current (mA)
0	0	0	0	0	59	81
1	0	0	0	1	71	98
2	0	0	1	0	84	116
3	0	0	1	1	100	138
4	0	1	0	0	119	164
5	0	1	0	1	141	194
6	0	1	1	0	168	231
7	0	1	1	1	200	275
8	1	0	0	0	238	327
9	1	0	0	1	283	389
A	1	0	1	0	336	462
B	1	0	1	1	400	550
C	1	1	0	0	476	655
D	1	1	0	1	566	778
E	1	1	1	0	673	925
F	1	1	1	1	0	0

Note: When the motor is stopped, the current is reduced from <IRUN> to <IHOLD>. In the case of 0 mA hold current (1111 in the hold current table), the following sequence is applied:

1. The current is first reduced to 59 mA or 81 mA during I_Boost function (corresponding to 0000 value in the table).
2. The PWM regulator is switched off; the bottom transistors of the bridges are grounded.
Step Mode Setting of step modes.

Step Mode		Step Mode
0	0	$1 / 2$ stepping
0	1	$1 / 4$ stepping
1	0	$1 / 8$ stepping
1	1	$1 / 16$ stepping

Position in OTP has only 9 bits. The two least significant bits are loaded as ' 0 ' to RAM when copied from OTP.

SecPosA If <SecPosA> $=0$ then <SecPos[10:2]>, <Failsafe> and <SleepEn> stored in bytes 0x05 and $0 x 06$ are used during operation If \langle SecPosA> $=1$ then <SecPos[10:2]>, <Failsafe> and <SleepEn> stored in bytes 0x08 and $0 x 09$ are used during operation
Programming SecPosA with " 1 " makes the OTP bytes $0 x 05$ and $0 x 06$ obsolete. In this case the OTP bytes at $0 x 08$ and $0 x 09$ will be read at the positions of bytes $0 x 05$ and $0 x 06$ when reading the OTP via the GetOTPparam command.

[^0]: 7. The parametric characteristics of the circuit are not guaranteed outside the parametric operating junction temperature range.
 8. The maximum functional operating temperature range can be limited by thermal shutdown Ttsd.
