

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Self-Protected Low Side Driver with Temperature and Current Limit

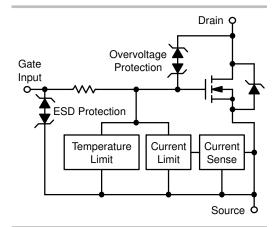
42 V, 14 A, Single N-Channel, SOT-223

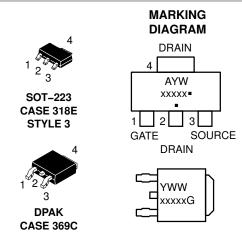
NCV8403/A is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Over Voltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications


- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial



ON Semiconductor®

www.onsemi.com

V _{DSS} (Clamped)	R _{DS(on)} TYP	I _D MAX (Limited)	
42 V	53 mΩ @ 10 V	15 A	

A = Assembly Location

Y = Year W, WW = Work Week

xxxxx = V8403 or 8403A G or = = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V _{DSS}	42	Vdc
Gate-to-Source Voltage	V_{GS}	±14	Vdc
Drain Current Continuous	I _D	Internally L	imited
Total Power Dissipation @ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2)	P _D	1.13 1.56	W
Thermal Resistance – SOT–223 Version Junction–to–Case Junction–to–Ambient (Note 1) Junction–to–Ambient (Note 2) Thermal Resistance – DPAK Version Junction–to–Case Junction–to–Ambient (Note 1) Junction–to–Ambient (Note 2)	R _θ JC R _θ JA R _θ JA R _θ JA R _θ JA	12 110 80 2.5 95 50	°C/W
Single Pulse Inductive Load Switching Energy (V _{DD} = 25 Vdc, V _{GS} = 5.0 V, I _L = 2.8 A, L = 120 mH, R _G = 25 Ω)	E _{AS}	470	mJ
Load Dump Voltage (V _{GS} = 0 and 10 V, R _I = 2.0 Ω , R _L = 4.5 Ω , t _d = 400 ms)	V_{LD}	55	V
Operating Junction Temperature	TJ	-40 to 150	°C
Storage Temperature	T _{stg}	-55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted onto minimum pad size (0.412" square) FR4 PCB, 1 oz cu.

2. Mounted onto 1" square pad size (1.127" square) FR4 PCB, 1 oz cu.

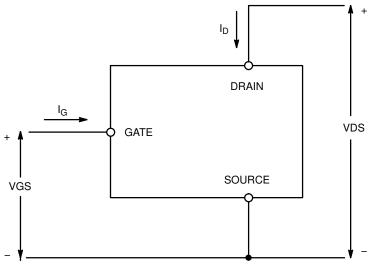


Figure 1. Voltage and Current Convention

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Characte	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS		•	•				
$\begin{array}{c} \text{Drain-to-Source Clamped Breakdown Vol} \\ (\text{V}_{GS} = 0 \text{ Vdc}, \text{I}_{D} = 250 \text{ μAdc}) \\ (\text{V}_{GS} = 0 \text{ Vdc}, \text{I}_{D} = 250 \text{ μAdc}, \text{T}_{J} = -40 \mu$Adc}) \end{array}$	V _{(BR)DSS}	42 40	46 45	51 51	Vdc Vdc		
Zero Gate Voltage Drain Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc) (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc, T _J = 150°	I _{DSS}	- -	0.6 2.5	5.0 –	μAdc		
Gate Input Current (V _{GS} = 5.0 Vdc, V _{DS} = 0 Vdc)		lgss	-	50	125	μAdc	
ON CHARACTERISTICS							
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.2 mAdc) Threshold Temperature Coefficient (Ne	gative)	V _{GS(th)}	1.0	1.7 5.0	2.2	Vdc mV/°C	
Static Drain-to-Source On-Resistance (N $(V_{GS} = 10 \text{ Vdc}, I_D = 3.0 \text{ Adc}, T_J @ 25^{\circ})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 3.0 \text{ Adc}, T_J @ 150^{\circ})$	R _{DS(on)}	_ _	53 95	68 123	mΩ		
Static Drain-to-Source On-Resistance (N $(V_{GS} = 5.0 \text{ Vdc}, I_D = 3.0 \text{ Adc}, T_J @ 25^{\circ})$ ($V_{GS} = 5.0 \text{ Vdc}, I_D = 3.0 \text{ Adc}, T_J @ 150^{\circ})$	R _{DS(on)}	_ _	63 105	76 135	mΩ		
Source-Drain Forward On Voltage (I _S = 7.0 A, V _{GS} = 0 V)	V _{SD}	-	0.95	1.1	V		
SWITCHING CHARACTERISTICS (Note 3	3)	•	•	•	•		
Turn-ON Time (10% V _{IN} to 90% I _D)	V _{IN} = 0 V to 5 V, V _{DD} = 25 V	t _{ON}		44		μs	
Turn-OFF Time (90% V _{IN} to 10% I _D)	$I_D = 1.0 \text{ A, Ext R}_G = 2.5 \Omega$	t _{OFF}		84			
Turn-ON Time (10% V _{IN} to 90% I _D)	V _{IN} = 0 V to 10 V, V _{DD} = 25 V.	t _{ON}		15			
Turn-OFF Time (90% V _{IN} to 10% I _D)	$I_D = 1.0 \text{ A, Ext R}_G = 2.5 \Omega$	t _{OFF}		116			
Slew-Rate ON (20% V _{DS} to 50% V _{DS})	$V_{in} = 0 \text{ to } 10 \text{ V}, V_{DD} = 12 \text{ V},$	-dV _{DS} /dt _{ON}		2.43		V/μs	
Slew-Rate OFF (80% V _{DS} to 50% V _{DS})				0.83			
SELF PROTECTION CHARACTERISTICS	$(T_J = 25^{\circ}C \text{ unless otherwise noted})$ (N	lote 5)					
Current Limit	$V_{GS} = 5.0 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{GS} = 5.0 \text{ V}, T_J = 150^{\circ}\text{C} \text{ (Note 3)}$	I _{LIM}	10 5.0	15 10	20 15	Adc	
Current Limit	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}, T_J = 150^{\circ}\text{C (Note 3)}$	I _{LIM}	12 8.0	17 13	22 18	Adc	
Temperature Limit (Turn-off)	V _{GS} = 5.0 Vdc (Note 3)	T _{LIM(off)}	150	175	200	°C	
Thermal Hysteresis	$V_{GS} = 5.0 \text{ Vdc}$	$\Delta T_{LIM(on)}$	_	15	-	°C	
Temperature Limit (Turn-off)	V _{GS} = 10 Vdc (Note 3)	T _{LIM(off)}	150	165	185	°C	
Thermal Hysteresis	V _{GS} = 10 Vdc	$\Delta T_{LIM(on)}$	_	15	_	°C	
GATE INPUT CHARACTERISTICS (Note	3)					•	
Device ON Gate Input Current	$V_{GS} = 5 \text{ V I}_{D} = 1.0 \text{ A}$	I _{GON}		50		μΑ	
	V _{GS} = 10 V I _D = 1.0 A			400			
Current Limit Gate Input Current	$V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$	I _{GCL}		0.1		mA	
	V _{GS} = 10 V, V _{DS} = 10 V			0.6			
Thermal Limit Fault Gate Input Current	V _{GS} = 5 V, V _{DS} = 10 V	I _{GTL}		0.45		mA	
$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$				1.5			
ESD ELECTRICAL CHARACTERISTICS (T _J = 25°C unless otherwise noted) (Note 3)							
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000	-	-	V	
Electro-Static Discharge Capability	Machine Model (MM)	ESD	400	-	_	V	

- Not subject to production testing.
 Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
 Fault conditions are viewed as beyond the normal operating range of the part.

TYPICAL PERFORMANCE CURVES

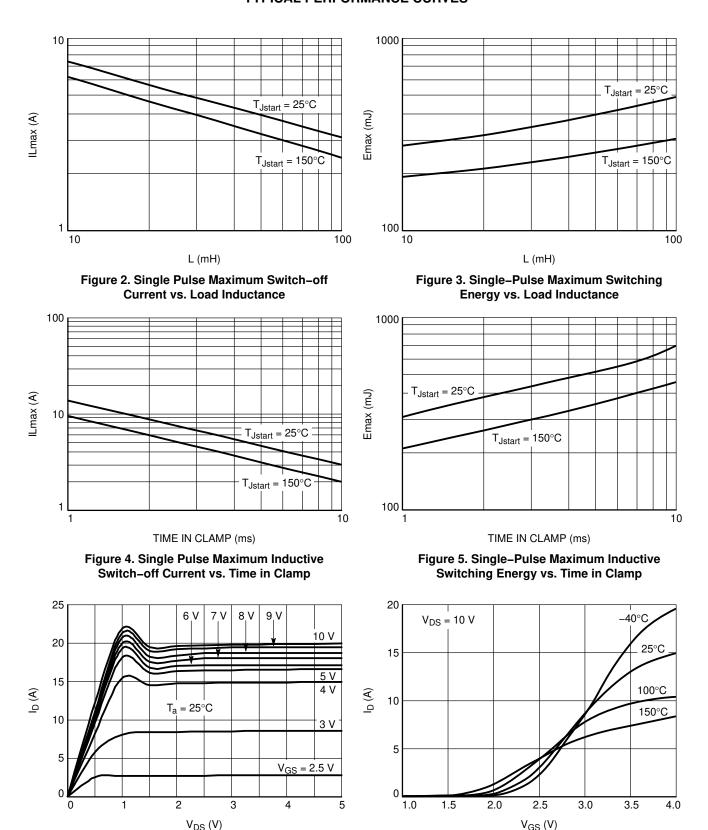


Figure 6. On-state Output Characteristics

Figure 7. Transfer Characteristics

TYPICAL PERFORMANCE CURVES

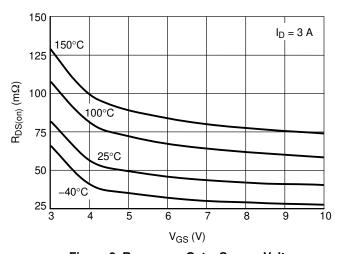


Figure 8. $R_{DS(on)}$ vs. Gate–Source Voltage

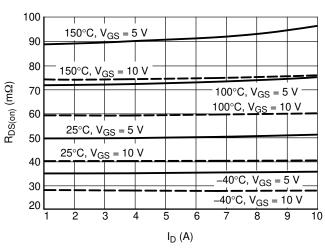


Figure 9. R_{DS(on)} vs. Drain Current

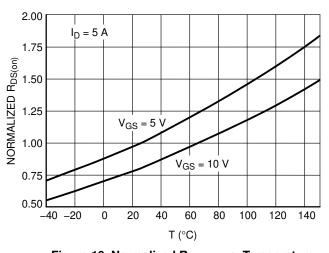


Figure 10. Normalized $R_{DS(on)}$ vs. Temperature

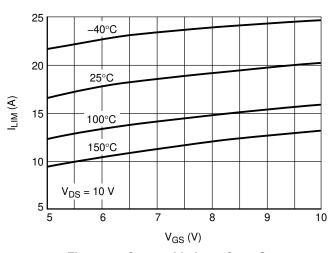


Figure 11. Current Limit vs. Gate-Source Voltage

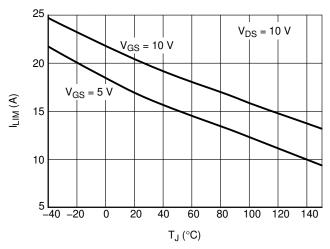


Figure 12. Current Limit vs. Junction Temperature

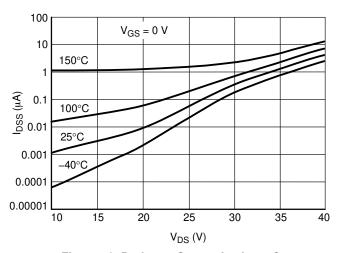


Figure 13. Drain-to-Source Leakage Current

TYPICAL PERFORMANCE CURVES

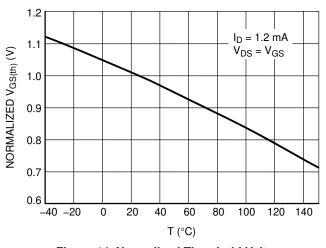


Figure 14. Normalized Threshold Voltage vs. Temperature

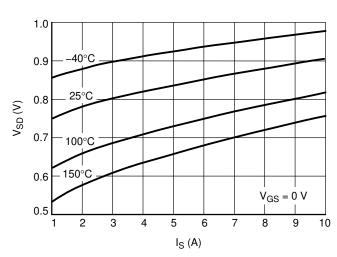


Figure 15. Source–Drain Diode Forward
Characteristics

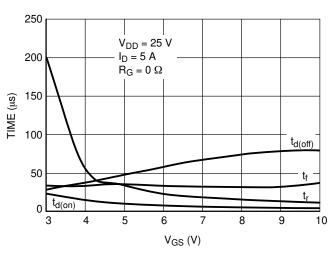


Figure 16. Resistive Load Switching Time vs.
Gate-Source Voltage

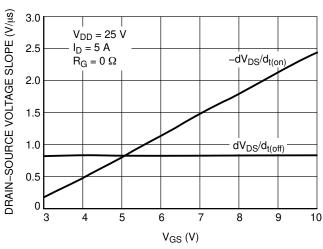


Figure 17. Resistive Load Switching
Drain-Source Voltage Slope vs. Gate-Source
Voltage

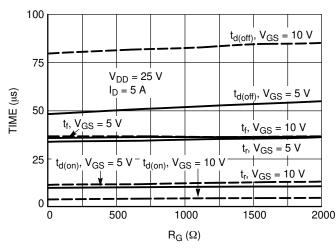


Figure 18. Resistive Load Switching Time vs.
Gate Resistance

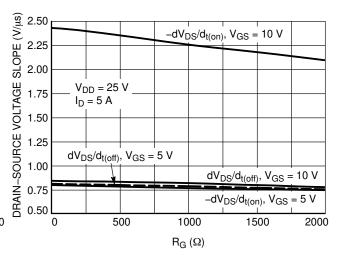


Figure 19. Drain-Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance

TYPICAL PERFORMANCE CURVES

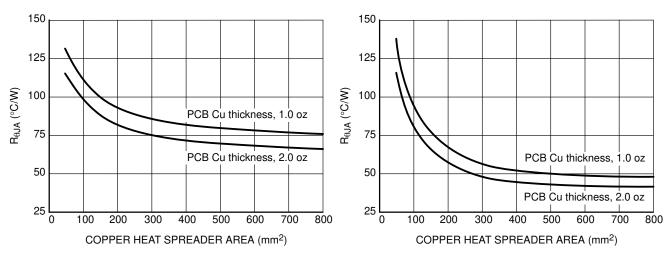


Figure 20. $R_{\theta JA}$ vs. Copper Area – SOT–223

Figure 21. $R_{\theta JA}$ vs. Copper Area – DPAK

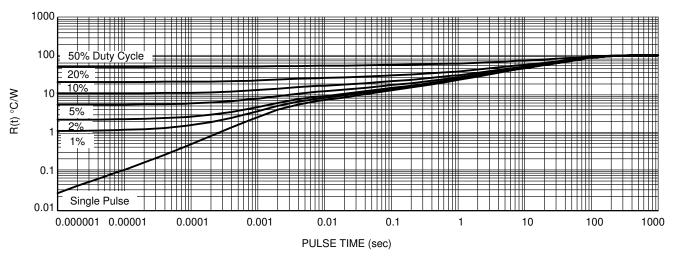


Figure 22. Transient Thermal Resistance - SOT-223 Version

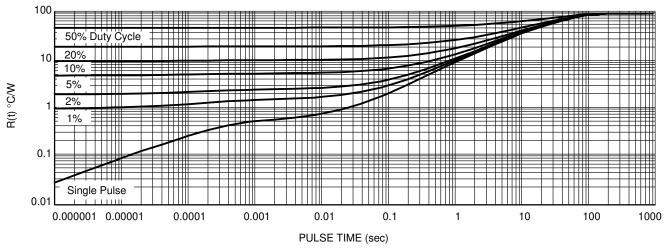


Figure 23. Transient Thermal Resistance - DPAK Version

TEST CIRCUITS AND WAVEFORMS

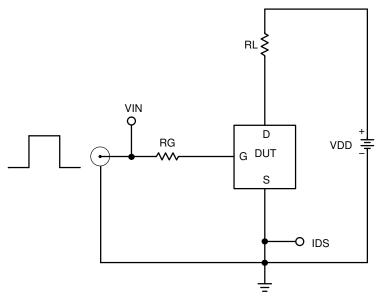


Figure 24. Resistive Load Switching Test Circuit

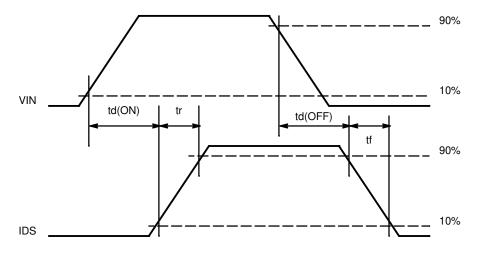


Figure 25. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

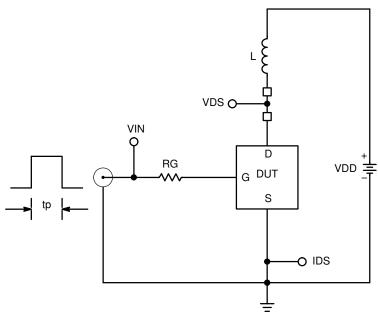


Figure 26. Inductive Load Switching Test Circuit

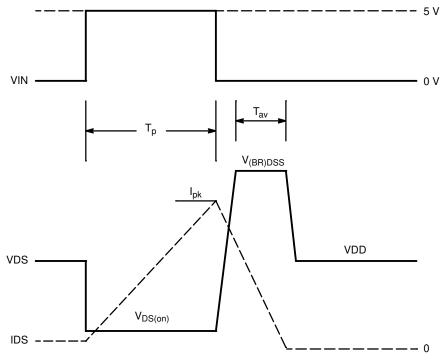
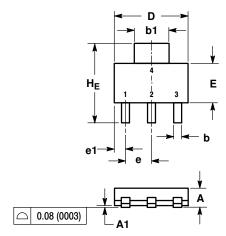


Figure 27. Inductive Load Switching Waveforms

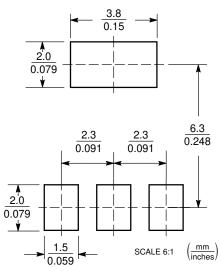

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8403STT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8403STT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8403DTRKG	DPAK (Pb-Free)	2500 / Tape & Reel
NCV8403ASTT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8403ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8403ADTRKG	DPAK (Pb-Free)	2500 / Tape & Reel
NCV8403AMNT2G (In Development)	DFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

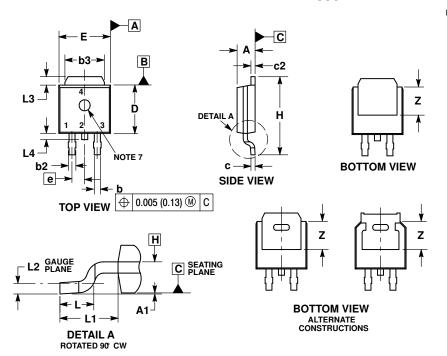
SOT-223 (TO-261) CASE 318E-04 ISSUE N



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	_	10°	0°	_	10°

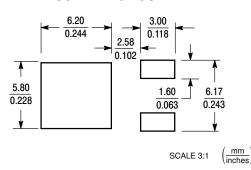
- STYLE 3:
 PIN 1. GATE
 2. DRAIN
 3. SOURCE
 4. DRAIN


SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C ISSUE F



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.

- 2. CON HOLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEPT A CONTOUR DETO CONTOUR STANDARD STANDARD. NOT EXCEED 0.006 INCHES PER SIDE
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 6. DATUMS A AND B ARE DETERMINED AT DATUM
- PLANE H.
 7. OPTIONAL MOLD FEATURE.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative