imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Self-Protected High Side Driver with Temperature and Current Limit

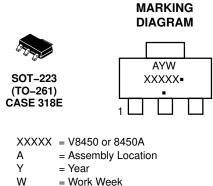
The NCV8450/A is a fully protected High–Side Smart Discrete device with a typical $R_{DS(on)}$ of 1.0 Ω and an internal current limit of 0.8 A typical. The device can switch a wide variety of resistive, inductive, and capacitive loads.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- Loss of Ground Protection
- ESD Protection
- Slew Rate Control for Low EMI
- Very Low Standby Current
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Automotive
- Industrial


PRODUCT SUMMARY

Symbol	Characteristics	Value	Unit
V _{IN_CL}	Overvoltage Protection	54	V
V _{D(on)}	Operation Voltage	4.5 – 45	V
R _{on}	On-State Resistance	1.0	Ω

ON Semiconductor®

www.onsemi.com

= vvork vveek = Pb-Free Package

= PD-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

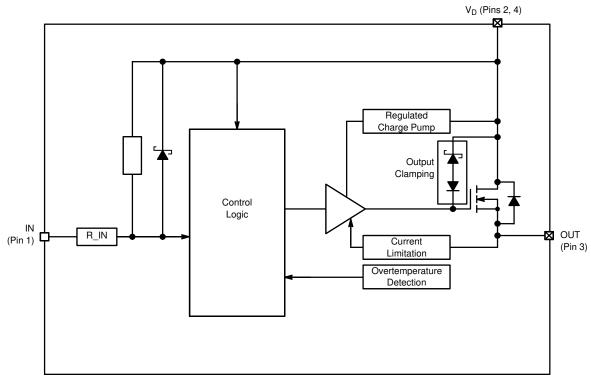


Figure 1. Block Diagram

PACKAGE PIN DESCRIPTION

Pin #	Symbol	Description
1	IN	Control Input, Active Low
2	VD	Supply Voltage
3	OUT	Output
4	V _D	Supply Voltage

MAXIMUM RATINGS

		v		
Rating	Symbol	Min	Мах	Unit
DC Supply Voltage (Note 1)	V _D	-16	45	V
Load Dump Protection (RI = 2 Ω , t _d = 400 ms, V _{IN} = 0, 10 V, I _L = 150 mA, V _{bb} = 13.5 V)	V _{Loaddump}		85	V
Input Current	l _{in}	-15	15	mA
Output Current (Note 1)	I _{out}		Internally Limited	А
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 2) @ $T_A = 25^{\circ}C$ (Note 3)	P _D		1.13 1.60	W
Electrostatic Discharge (Note 4) (Human Body Model (HBM) 100 pF/1500 Ω) Input All other			1 5	kV
Single Pulse Inductive Load Switching Energy (Note 4) $(V_{DD} = 13.5 \text{ V}, \text{ I} = 465 \text{ mApk}, \text{ L} = 200 \text{ mH}, \text{ T}_{JStart} = 150^{\circ}\text{C})$	E _{AS}		29	mJ
Operating Junction Temperature	TJ	-40	+150	°C
Storage Temperature	T _{storage}	-55	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.

2. Minimum Pad.

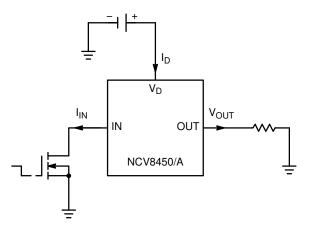
3. 1 in square pad size, FR-4, 1 oz Cu.

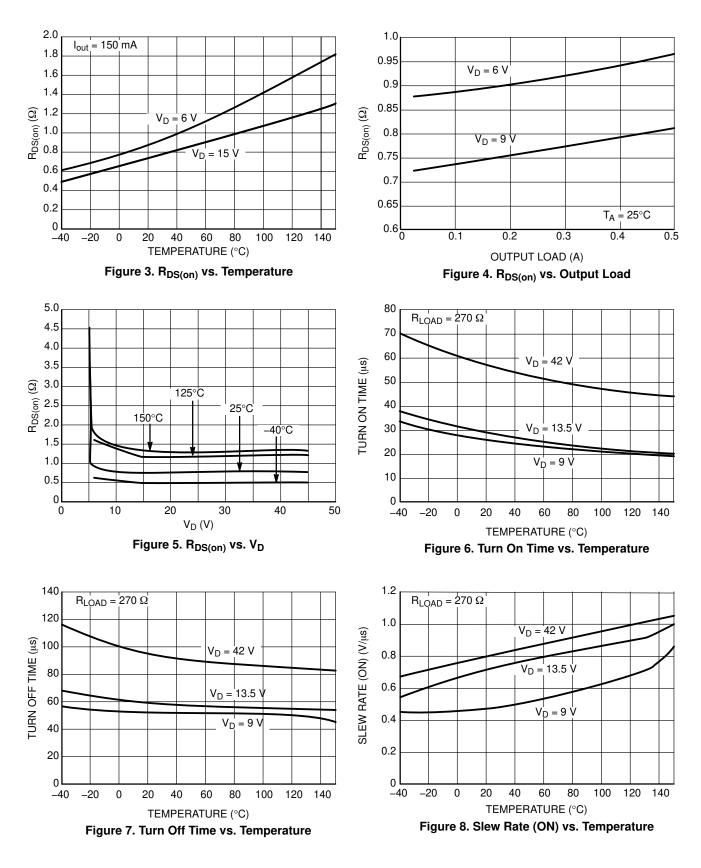
4. Not subjected to production testing.

THERMAL RESISTANCE RATINGS

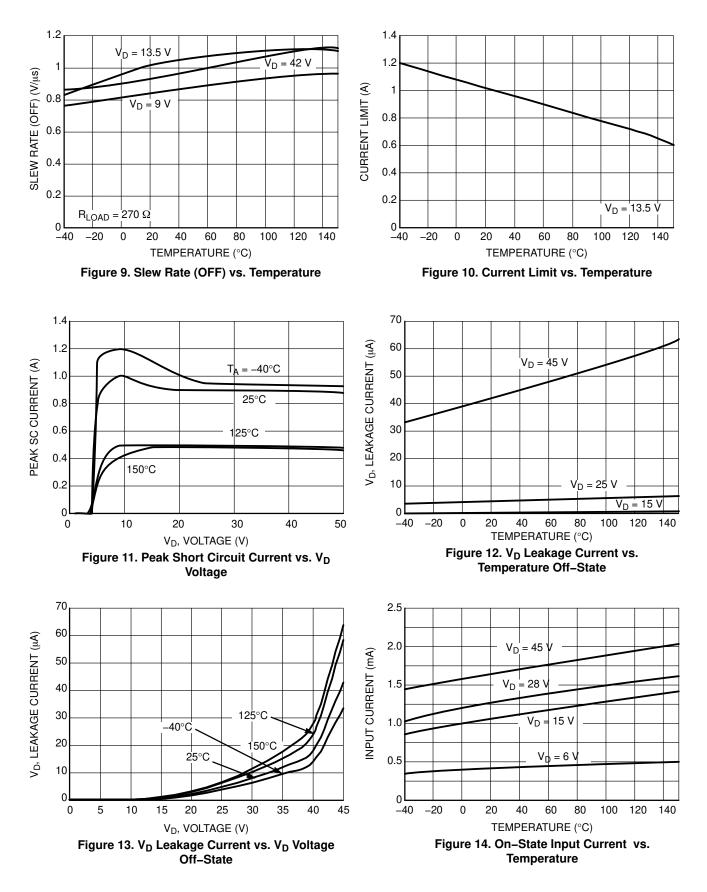
Parameter	Symbol	Max Value	Unit
Thermal Resistance (Note 5) Junction–to–Ambient (Note 2) Junction–to–Ambient (Note 3)	$R_{ heta JA}$ $R_{ heta JA}$	110 78.3	K/W

5. Not subjected to production testing.



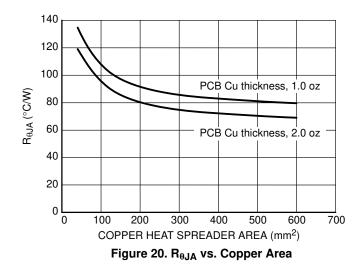

Figure 2. Applications Test Circuit

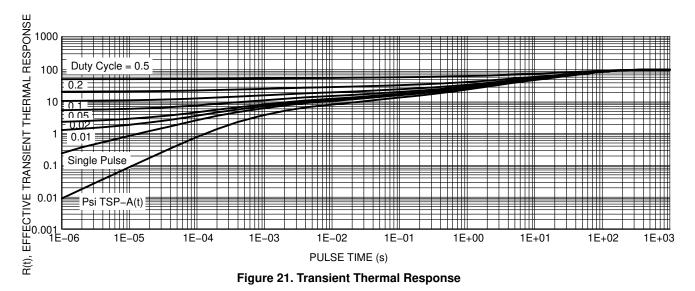
ELECTRICAL CHARACTERISTICS (6 \le V_D \le 45 V; -40°C <T_J < 150°C unless otherwise specified)


			Value			
Rating	Symbol	Conditions	Min	Тур	Max	Unit
OUTPUT CHARACTERISTICS				•	•	•
Operating Supply Voltage	V _{SUPPLY}		4.5	-	45	V
On Resistance (Pin 1 Connected to GND)	R _{ON}	$\begin{array}{l} T_{J} = 25^{\circ}C \ , \ I_{OUT} = 150 \ \text{mA}, \ V_{D} = 7 \ \text{V} - 45 \ \text{V} \\ T_{J} = 150^{\circ}C, \ I_{OUT} = 150 \ \text{mA}, \ V_{D} = 7 \ \text{V} - 45 \ \text{V} \\ (\text{Note 6}) \\ T_{J} = 25^{\circ}C \ , \ I_{OUT} = 150 \ \text{mA}, \ V_{D} = 6 \ \text{V} \end{array}$		1.0 1.4 1.1	2 3 2.1	Ω
Standby Current (Pin 1 Open)	۱ _D	$V_{\rm D} \le 20 \text{ V}$ $V_{\rm D} \ge 20 \text{ V}$ $V_{\rm D} > 20 \text{ V}$		0.6	10 100	μΑ
INPUT CHARACTERISTICS						I
Input Current – Off State	I _{IN_OFF}	$\begin{array}{l} V_{OUT} \leq 0.1 \; \text{V}, \; \text{R}_{\text{L}} = 270 \; \Omega, \; \text{T}_{\text{J}} = 25^{\circ}\text{C} \\ V_{OUT} \leq 0.1 \text{V}, \; \text{R}_{\text{L}} = 270 \; \Omega, \; \text{T}_{\text{J}} = 150^{\circ}\text{C} \; (\text{Note 6}) \end{array}$	-50 -40			μΑ
Input Current – On State (Pin 1 Grounded)	I _{IN_ON}			1.5	3	mA
Input Resistance (Note 6)	R _{IN}			1		kΩ
SWITCHING CHARACTERISTICS	;					
Turn–On Time (Note 7) ($V_{IN} = V_D$ to 0 V) to 90% V_{OUT}	t _{ON}	$\label{eq:RL} \begin{array}{l} {\sf R}_L = 270 \ \Omega \ ({\sf Note} \ 6) \\ {\sf V}_D = 13.5 \ {\sf V}, \ {\sf R}_L = 270 \ \Omega, \ {\sf T}_J = 25^\circ {\sf C} \end{array}$		30	125 100	μS
Turn–Off Time (Note 7) ($V_{IN} = 0 V \text{ to } V_D$) to 10% V_{OUT}	t _{OFF}	$\label{eq:relation} \begin{array}{l} R_{L} = 270 \ \Omega \ (\text{Note 6}) \\ V_{D} = 13.5 \ V, \ R_{L} = 270 \ \Omega, \ T_{J} = 25^{\circ} C \end{array}$		60	175 150	μS
Slew Rate On (Note 7) (V _{IN} = V _D to 0V) 10% to 30% V _{OUT}	dV/dt _{ON}	R_L = 270 Ω (Note 6) V _D = 13.5 V, R_L = 270 Ω, T_J = 25°C		0.7	4 4	V/µs
Slew Rate Off (Note 7) ($V_{IN} = 0 V$ to V_D) 70% to 40% V_{OUT}	dV/dt _{OFF}	R_L = 270 Ω (Note 6) V_D = 13.5 V, R_L = 270 $\Omega,~T_J$ = 25°C		0.9	4 4	V/µS
OUTPUT DIODE CHARACTERIS	TICS (Note 6)					
Drain-Source Diode Voltage	V _F	I _{OUT} = -0.2 A		0.6		V
Continuous Reverse Drain Current	۱ _S	$T_J = 25^{\circ}C$			0.2	A
PROTECTION FUNCTIONS (Note	8)					
Temperature Shutdown (Note 6)	T _{SD}		150	175	-	°C
Temperature Shutdown Hysteresis (Note 6)	T _{SD_HYST}			5		°C
Output Current Limit	ILIM	$ \begin{array}{l} T_J = -40^\circ C, \ V_D = 13.5 \ V, \ t_m = 100 \ \mu s \ (\text{Note 6}) \\ T_J = 25 \ ^\circ C, \ V_D = 13.5 \ V, \ t_m = 100 \ \mu s \\ T_J = 150 \ ^\circ C, \ V_D = 13.5 \ V, \ t_m = 100 \ \mu s \ (\text{Note 6}) \end{array} $	0.5	0.8	1.5	A
Output Clamp Voltage (Inductive Load Switch Off) At V _{OUT} = V _D - V _{CLAMP}	V _{CLAMP}	I _{OUT} = 4 mA	45	52		V
Overvoltage Protection	V _{IN_CL}	I _{CLAMP} = 4 mA	50	54		V

6. Not subjected to production testing
7. Only valid with high input slew rates
8. Protection functions are not designed for continuous repetitive operation and are considered outside normal operating range

TYPICAL CHARACTERISTIC CURVES


TYPICAL CHARACTERISTIC CURVES

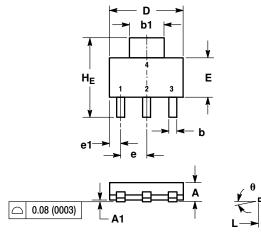


TYPICAL CHARACTERISTIC CURVES

TYPICAL CHARACTERISTIC CURVES

ISO PULSE TEST RESULTS

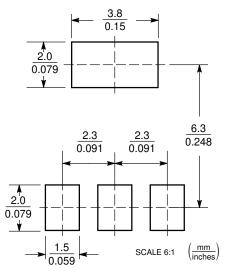
Test Pulse	Test Level	Test Results	Pulse Cycle Time and Generator Impedance
1	200 V	С	500 ms, 10 Ω
2	150 V	С	500 ms, 10 Ω
3a	200 V	С	100 ms, 50 Ω
3b	200 V	С	100 ms, 50 Ω
5	175 V	E(100 V)	400 ms, 2 Ω


ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8450STT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8450ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


SOT-223 (TO-261) CASE 318E-04 ISSUE N

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	_	10°	0°	-	10°

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the product of the provided in the trademarks of the product of the pr

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative