

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NCV885300 Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Description

The NCV885300 evaluation board provides a convenient way to evaluate and integrate a complete high-efficiency non-synchronous buck converter design. No additional components are required, other than dc supplies for the input voltage and enable pin. The board can also be connected to an external clock source to synchronize the switching frequency. The power good signal can be pulled up externally with the PG+ pin. The board is configured for a 5.0 V output with a 340 kHz switching frequency and a 3 A current limit, intended for applications requiring 2 A of current.

Modifying the NCV885300 evaluation board for different output voltage, switching frequency, or current limit is straightforward, requiring minimal component changes.

Key Features

- 5.0 V Output Voltage
- 340 kHz Switching Frequency
- 2.0 A Current Limit
- Power Good Signal
- Wide Input Voltage of 6.0 V to 36 V
- Regulated through Load Dump Conditions
- External Clock Synchronization up to 500 kHz
- Automotive Grade

Figure 1. NCV885300EVB Board Picture

Table 1. EVALUATION BOARD TERMINALS

Pin Name	Function	
VIN	Positive dc input voltage	
VOUT	Regulated dc output voltage	
GND	Common dc return	
EN/SYNC	Enable input and external clock synchronization input	
PG	Digital power good output	
PG+	Power good pull-up. Use this pin only when pulling-up PG to an external voltage source.	

Table 2. ABSOLUTE MAXIMUM RATINGS

(Voltages are with respect to GND)

Rating	Value	Units
Dc supply voltage (VIN)	-0.3 to 36	V
Dc supply voltage (EN/SYNC, PG, PG+)	-0.3 to 6.0	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS

(T_A = 25°C, 6.0 V \leq V_{IN} \leq 36 V, V_{EN/SYNC} = 5.0 V, 0 \leq I_{OUT} \leq 2.0 A, unless otherwise specified)

Characteristics	Conditions	Typical Value	Units
Regulation			
Output Voltage		5.0	V
Voltage Accuracy		2	%
Line Regulation	I _{OUT} = 1.0 A	0.04	%
Load Regulation	V _{IN} = 13.2 V	0.12	%
Switching	<u> </u>		
Switching Frequency		340	kHz
Soft-start Time		2.0	ms
SYNC Frequency Range		270 to 500	kHz
Current Limit			
Cycle-by-Cycle Current Limit		3.33	А
Over Current Protection Threshold		5.0	A
Protections	<u> </u>		•
Input Undervoltage Lockout (UVLO)	V _{IN} decreasing	3.1	V
Thermal Shutdown	T _J rising	170	°C

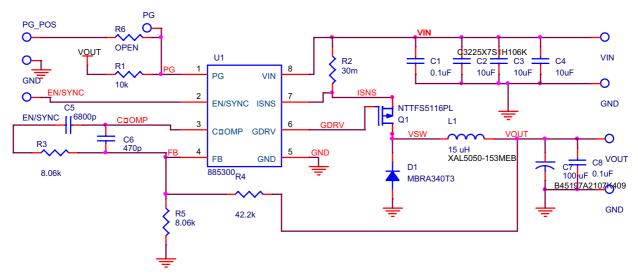


Figure 2. NCV885300EVB Board Schematic

Operational Guidelines

- 1. Connect a dc input voltage, within the 6.0 V to 36 V range, between VIN and GND
- 2. Connect a load between VOUT and GND
- 3. Connect a dc enable voltage, within the 2.0 V to 5.5 V range, between EN/SYNC and GND
- 4. Optionally, for external clock synchronization, connect a pulse source between EN/SYNC and GND. The high state level should be within the 2.0 V to 5.5 V range, and the low state level within the 0.0 V to 0.8 V range, with a frequency within the 270 kHz to 500 kHz range.

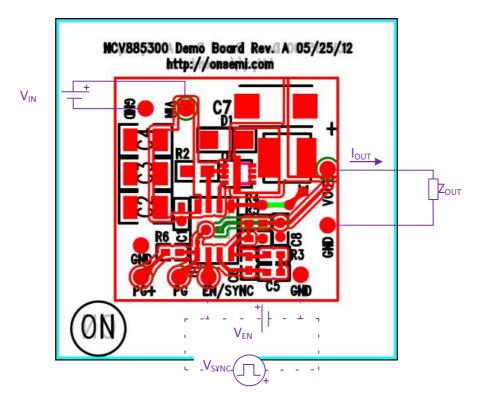


Figure 3. NCV885300EVB Board Connections

Power Good Operation

- The Power Good pin (PG) allows you to digitally monitor the output voltage. When VOUT is above 90% of the expected value, the PG signal is in a high state. By default, PG is pulled high to VOUT through a $10~\mathrm{k}\Omega$ resistor.
- Optional: To pull the PG pin high using a signal other than VOUT, please make the following board modifications:
- 1. Remove R1 from the board.
- 2. Populate R6 with a 10 $k\Omega$ resistor.
- 3. Connect the a voltage source between PG+ and GND (please see the Absolute Maximum Ratings table for more information).
- 4. PG is now ready to digitally monitor VOUT using an external pull-up.

TYPICAL PERFORMANCE

Regulation

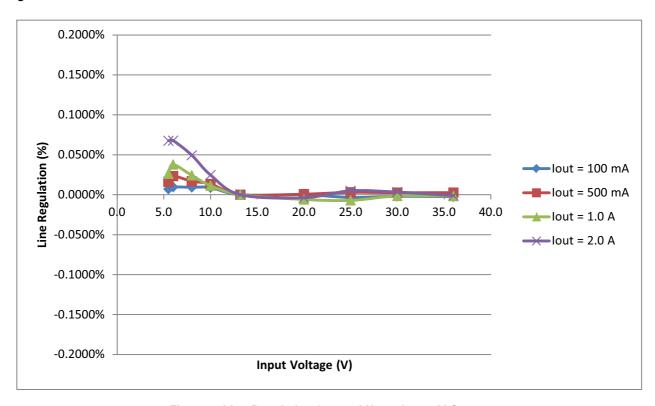


Figure 4. Line Regulation for 340 kHz and a 5.0 V Output

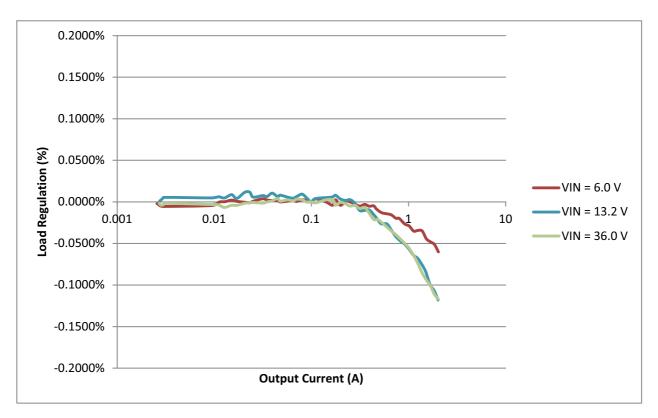
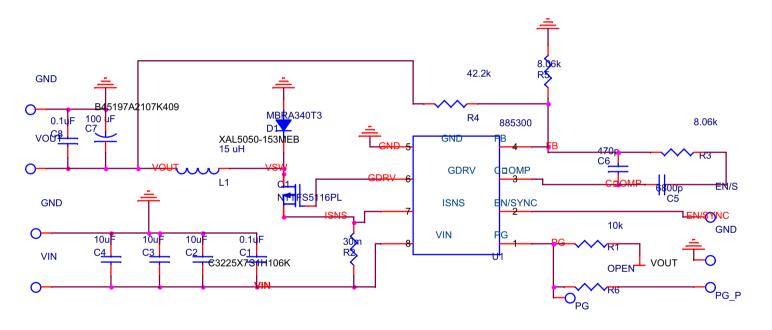



Figure 5. Load Regulation for 340 kHz and a 5.0 V Output

Figure 6. Evaluation Board Schematic

SCHEMATIC

PCB LAYOUT

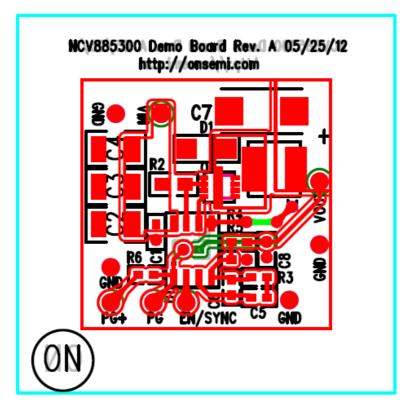


Figure 7. Top View

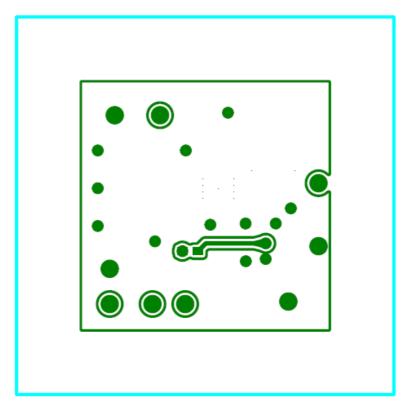


Figure 8. Bottom View

Table 4. BILL OF MATERIALS

Reference	Value	Part #	Manufacturer	Description	Package
U1		NCV885300	ON Semiconductor	Integrated circuit	SOIC-8
Q1		NTTFS5116PL	ON Semiconductor	Power MOSFET, P-Channel	WDFN8
D1		MBRA340T3G	ON Semiconductor	Diode, Schottky, 40 V, 3 A	SMA
L1	15 μΗ	XAL5050-153MEB	Coilcraft	Shielded Power Inductor	5 mm x 5 mm
R1	10.0 kΩ	CRCW060310K0FKEA	Vishay/Dale	Resistor, 1%	0603
R2	0.03 Ω	WSL0805R0300FEA18	Vishay/Dale	Resistor, 1%	0805
R3, R5	8.06 kΩ	CRCW06038K06FKEA	Vishay/Dale	Resistor, 1%	0603
R4	42.2 kΩ	CRCW060342K2FKEA	Vishay/Dale	Resistor, 1%	0603
C1	0.1 μF	GCM188R71H104KA57D	Murata	Capacitor, 50 V, X7R	0603
C2, C3, C4	10 μF	GRM32DF51H106ZA01L	Murata	Capacitor, 50 V, Y5V	1210
C5	6800 pF	EMK107SD682JA-T	Taiyo Yuden	Capacitor, 16 V	0603
C6	470 pF	06033A471JAT2A	AVX	Capacitor, 25 V, NP0	0603
C7	100 μF	B45197A2107K409	Kemet	Capacitor, 10 V	2917
C8	0.1	C0603C104K8RACTU	Kemet	Capacitor, 10 V, X7R	0603

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative