imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NCV887200 Automotive Grade High-Frequency SEPIC Controller Board Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Description

This NCV887200 evaluation board provides a convenient way to evaluate a high-frequency current-mode control SEPIC converter design. The topology uses two inductors. No additional components are required, other than dc supplies for the input and enable voltages. An external clock can be used to synchronize the switching frequency. The output is rated 12 V / 1.5 A with a 675 kHz switching frequency over the typical 6 V to 18 V automotive input voltage range.

Key Features

- 12 V / 1.5 A Output
- 675 kHz Switching Frequency (NCV887200)
- Input Undervoltage Lockout
- Internal Soft-Start
- Wide Input Voltage of 6 V to 40 V
- Regulates through 45 V Load Dump Conditions
- External Clock Synchronization up to 1.1 MHz
- Automotive Grade

Figure 1. NCV887200 SEPIC Evaluation Board

1

Table 1. EVALUATION BOARD TERMINALS

Terminal	Function				
VIN	Positive DC input voltage				
GND	Common DC return				
VOUT	Regulated DC output voltage				
EN/SYNC	Enable and synchronization input				

Table 2. ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND)

Rating	Value	Unit
DC Supply Voltage (VIN)	–0.3 to 40	V
DC Supply Voltage (EN, SYNC)	–0.3 to 6	V
Peak Transient Voltage (Load Dump on VIN)	45	V
Junction temperature	-40 to 150	°C
Ambient temperature (evaluation board)	-40 to 105	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL CHARACTERSITICS

(TA = 25°C, 4.5 \leq V_{IN} \leq 40 V, V_{EN} = 2 V, V_{OUT} = 3.3 V, 0 \leq I_{OUT} \leq 1.2 A, unless otherwise specified)

Characteristic	Conditions	Typical Value	Unit			
SWITCHING						
Switching Frequency	-	675	kHz			
Soft-start Time	-	1.9	ms			
SYNC Frequency range	-	675 – 1025	kHz			
CURRENT LIMIT		· · ·				
Cycle-by-cycle Current Limit (FET)	$R_{sense} = 40 \text{ m}\Omega$	5	А			
PROTECTIONS						
Input Undervoltage Lockout (UVLO)	V _{IN} decreasing	< 4.75*	V			
Input Undervoltage Lockout (UVLO)	je Lockout (UVLO) V _{IN} increasing 5.23		V			
Thermal Shutdown	T _A increasing	170	°C			
Short Circuit Threshold Voltage	V _{FB} as % of V _{ref}	67	%			

*See Note 3 from Operating Guidelines

OPERATIONAL GUIDELINES

- 1. Connect a DC input voltage, within the 6 V to 40 V range, between VIN and GND.
- 2. Connect a DC enable voltage, within the 2.0 V to 5.0 V range, between EN/SYNC and GND.
- 3. The evaluation board feedback components were selected to for continuous operation at rated 12 V / 1.5 A output power at a minimum input voltage of 6 V. The NCV887200 V_{IN} has its operational voltage diode-ored between the converter output (12 V) and input voltages. The converter turns-on typically at 6.7 V. Once energized, the output voltage supplies power to the IC when the battery voltage is below (approximately) 11.5 V. The power supply will enter a hiccup soft-start mode if

VFB is below 67% of IC internal V_{REF} (1.2 V) for more than 35 ns after the soft–start period.

- 4. Optionally for external clock synchronization, connect a pulse source between EN/SYNC and GND. The high state level should be within the 2 to 5 V range, and the low state level within the -0.3 V to 0.8 V range, with a minimum pulse width of 40 ns and a frequency within the 675 and 1100 kHz range.
- NOTE: The converter was designed for 675 kHz 12 V / 1.5 A continuous mode operation. Operation beyond 675 kHz and/or at a different output voltage may require modifications of feedback loop component and inductor values.

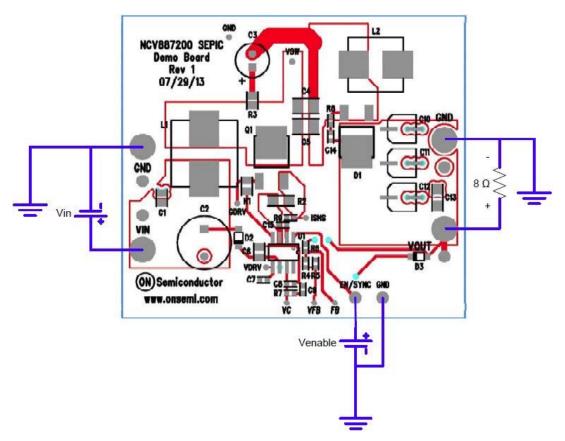


Figure 2. Evaluation Board Connections

TYPICAL PERFORMANCE

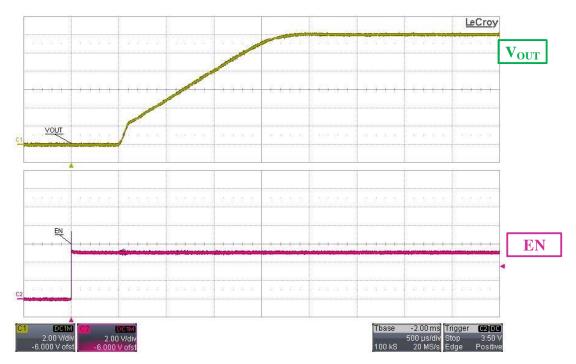


Figure 3. Typical Start–up with V_{IN} = 12 V, I_{OUT} = 1 A

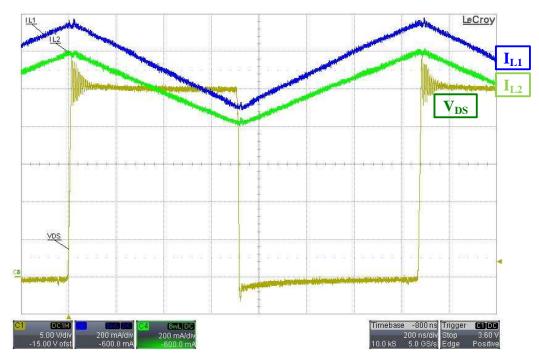
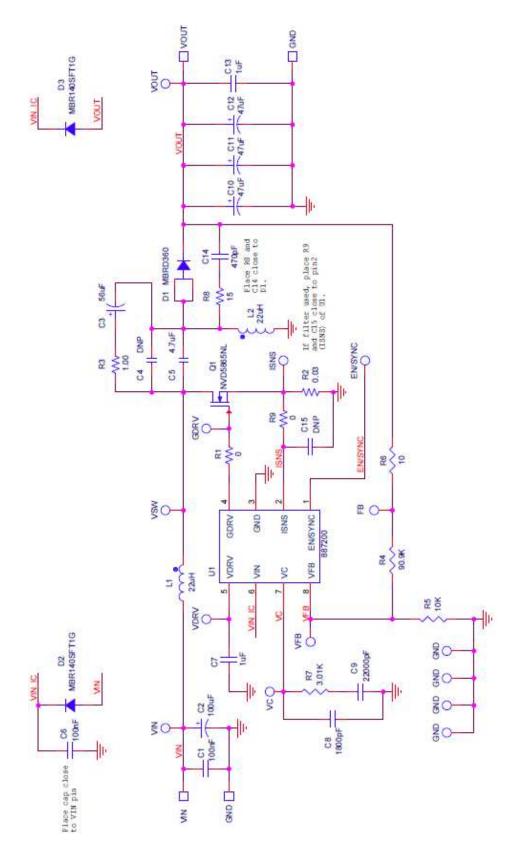



Figure 4. Operational Waveforms, V_{IN} = 12 V, I_{OUT} = 1 A

SCHEMATIC

PCB LAYOUT

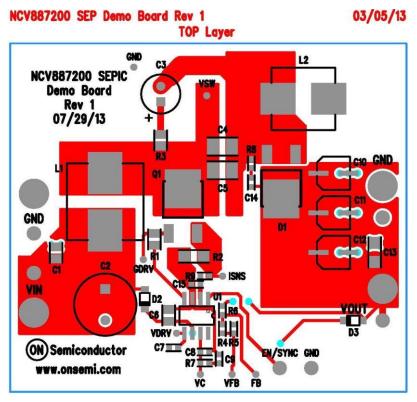


Figure 6. Top View

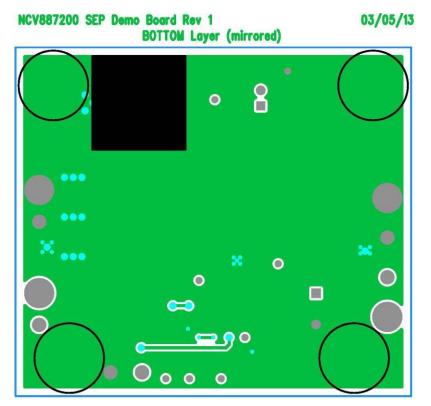


Figure 7. Bottom View

BILL OF MATERIALS

Table 4. BILL OF MATERIALS

Reference Designat- or(s)	Qty	Description	Value	Toler- ance	Footprint	Manufacturer	Manufacturer's Part Number	Substi- tution Allowed	RoHS Com- pliant
C1, C6	2	CAP CER 0.1UF 50V 10% X7R 0805	100 nF	10%	805	TDK Corporation	CGA4J2X7R1H104K125AA	Yes	Yes
C2	1	CAP 100UF 50V ELECT FC RADIAL	100 uF	20%	FCA_ CAP10X12p5	Panasonic – ECG	EEU-FC1H101	No	Yes
C3	1	CAP ALUM 56UF 50V 20% RADIAL	56 μF	20%	FCA_ CAP6P3X11	Chemi-Con	EKZE500ELL560MF11D	No	Yes
C4	1	CAP CER 4.7UF 50V 10% X7R 1210	4.7 μF	10%	1210	Murata Electronics North America	GRM32ER71H475KA88L	Yes	Yes
C5	DNP				1210			Yes	Yes
C7	1	CAP CER 1UF 16V X7R 10% 0603	1 μF	10%	603	Murata Electronics North America	GCM188R71C105KA64D	Yes	Yes
C8	1	CAP CER 1800PF 50V 5% NP0 0603	1800 pF	5%	603	TDK Corporation	CGA3E2C0G1H182J080AA	Yes	Yes
C9	1	CAP CER 0.022UF 16V 10% X7R 0603	22000 pF	10%	603	Murata Electronics North America	GRM188R71C223KA01D	Yes	Yes
C10, C11, C12	3	CAP POLY ALUM 47UF 16V SMD	47 μF	20%	CG_CAP5X6	Nichicon	PCG1C470MCL1GS	No	Yes
C13	1	CAP CER 1UF 50V X7R 1206	1 μF	10%	1206	Murata Electronics North America	GCM31MR71H105KA55L	Yes	Yes
C14	1	CAP CER 470PF 50V 5% NP0 0603	470 pF	5%	603	Murata Electronics North America	GCM1885C1H471JA16D	Yes	Yes
C15	DNP				603			Yes	Yes
D1	1	60 V, 3.0 A Schottky Rectifier DPAK	60 V / 3 A	N/A	DPAK3_DMD	ON Semiconductor	MBRD360G	No	Yes
D2, D3	2	DIODE SCHOTTKY 40V 1A SOD123FL	40 V / 1 A	N/A	SOD_123	ON Semiconductor	MBR140SFT1G	No	Yes
L1	1	High Temp SMT Power Inductor 2.3A	22 μH, 2.3 A	20%	COIL_MSS1260	Coilcraft Inc	MSS1246T-223ML	No	Yes
L2	1	High Temp SMT Power Inductor 1.9A	22 μH, 1.9 A	20%	COIL_MSS1038	Coilcraft Inc	MSS1038T-223ML	No	Yes
Q1	1	MOSFET N CH 60V DPAK-4	60 V / 38 A	N/A	DPAK3_DMD	ON Semiconductor	NVD5865NLT1G	No	Yes
R1	1	RES 0.0 OHM 1/8W JUMP 0805 SMD	0	N/A	805	Vishay/Dale	CRCW08050000Z0EA	Yes	Yes
R2	1	RES .03 OHM 1W 1% 1206 SMD	0.03	1%	1206	TT Electronics/ Welwyn	LRMAM1206-R03FT5	Yes	Yes
R3	1	RES 1.00 OHM 1/8W 1% 0805 SMD	1	1%	805	Vishay/Dale	CRCW08051R00FKEA	Yes	Yes
R4	1	RES 90.9K OHM 1/10W 1% 0603 SMD	90.0 K	1%	603	Yageo	RC0603FR-0790K9L	Yes	Yes
R5	1	RES 10.0K OHM 1/10W 1% 0603 SMD	10.0 K	1%	603	Rohm Semiconductor	MCR03EZPFX1002	Yes	Yes
R6	1	RES 10.0 OHM 1/10W 1% 0603 SMD	10	1%	603	Yageo	RC0603FR-0710RL	Yes	Yes
R7	1	RES 3.01K OHM 1/10W 1% 0603 SMD	3.01 K	1%	603	Vishay/Dale	CRCW06033K01FKEA	Yes	Yes
R8	1	RES 15.0 OHM 1/10W 1% 0603 SMD	15	1%	603	Vishay/Dale	CRCW060315R0FKEA	Yes	Yes
R9	1	RES 0.0 OHM 1/10W JUMP 0603 SMD	0	N/A	603	Vishay/Dale	CRCW06030000Z0EA	Yes	Yes
TP1, 7, 14, 16, 17, 20	6	PIN INBOARD .042" HOLE 1000/PKG	N/A	N/A	TP	Vector Electronics	K24C/M	Yes	Yes

Table 4. BILL OF MATERIALS

Reference Designat- or(s)	Qty	Description	Value	Toler- ance	Footprint	Manufacturer	Manufacturer's Part Number	Substi- tution Allowed	RoHS Com- pliant
TP2, 3, 5, 6, 8, 9, 15, 18	DNP	CIRCUIT PIN PRNTD .020"D .425"L	N/A	N/A	SMALLTP	Mill-Max Manufacturing Corp.	3128-2-00-15-00-00-08-0	Yes	Yes
TP10, 11, 12, 13	4	TERM SOLDER TURRET .219" .109"L	N/A	N/A	TURRET	Mill-Max Manufacturing Corp.	2501-2-00-44-00-00-07-0	Yes	Yes
U1	1	Automotive Non–Sync Boost Controller	N/A	N/A	SOIC8_N_ADJ	ON Semiconductor	NCV887200	No	Yes
Mounting Feet	4	BUMPON HEMISPHERE .44X.20 BLACK	N/A	N/A	0.44 inch circle	ЗМ	SJ-5003 (BLACK)	Yes	Yes

ON Semiconductor and we registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the eaplication or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distibutors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death mas occur. This literature is subject to all applicable copyright laws and is not for regarding the design or manufacture of the part. SCILLC was negligent regarding the design or manufacture of the part. SCILLC is and is not for regarding the design or manufacture of the part. SCILLC man is subject to all applicable copyright laws and is not for regarding the design or manufac

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative