imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

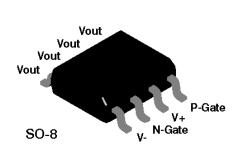
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

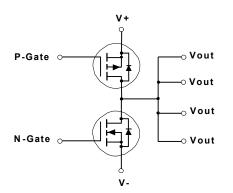
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR TM


NDS8852H Complementary MOSFET Half Bridge


General Description

These Complementary MOSFET half bridge devices are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage half bridge applications or CMOS applications when both gates are connected together.

Features

- N-Channel 4.3A, 30V, R_{DS(ON)}=0.08Ω @ V_{GS}=10V.
 P-Channel -3.4A, -30V, R_{DS(ON)}=0.13Ω @ V_{GS}=-10V.
- High density cell design or extremely low R_{DS(ON)}.
- High power and current handling capability in a widely used surface mount package.
- Matched pair for equal input capacitance and power capability

Absolute Maximum Ratings T_x= 25°C unless otherwise noted

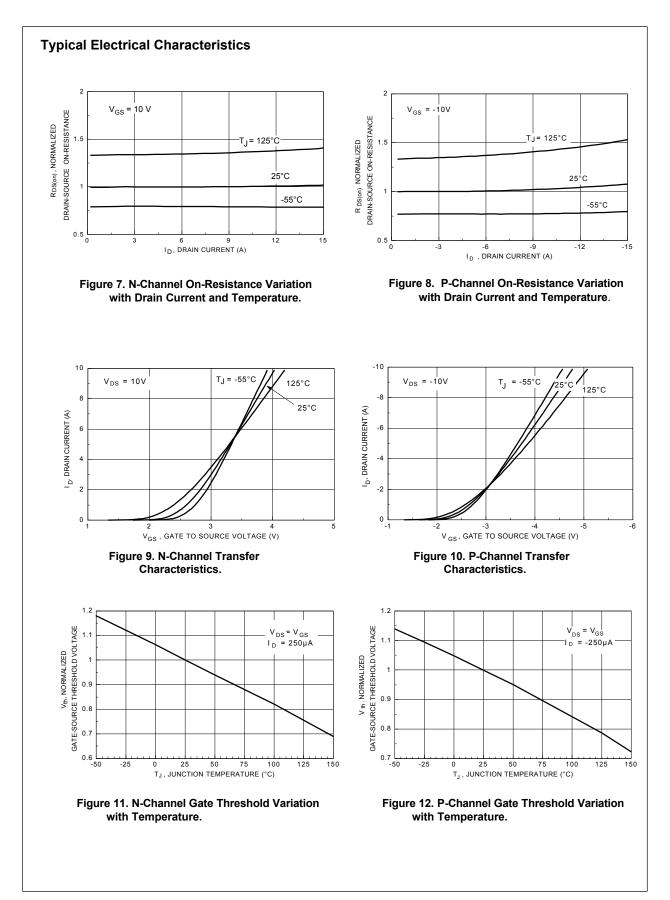
Symbol	Parameter		N-Channel	P-Channel	Units	
V _{DSS}	Drain-Source Voltage		30	-30	V	
V _{GSS}	Gate-Source Voltage		20	-20	V	
l _D	Drain Current - Continuous	(Note 1a & 2)	4.3	-3.4	А	
	- Pulsed		15	-10		
D	Maximum Power Dissipation	(Note 1a)	2.5		W	
	(Single Device)	(Note 1b)	1.2			
		(Note 1c)		1		
Tj,T _{stg}	Operating and Storage Temperature Range	-55 ta	°C			
THERMA	L CHARACTERISTICS					
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Single Device)	(Note 1a)	50		°C/W	
R _{θJC}	Thermal Resistance, Junction-to-Case (Single Device) (Note 1)		25		°C/W	

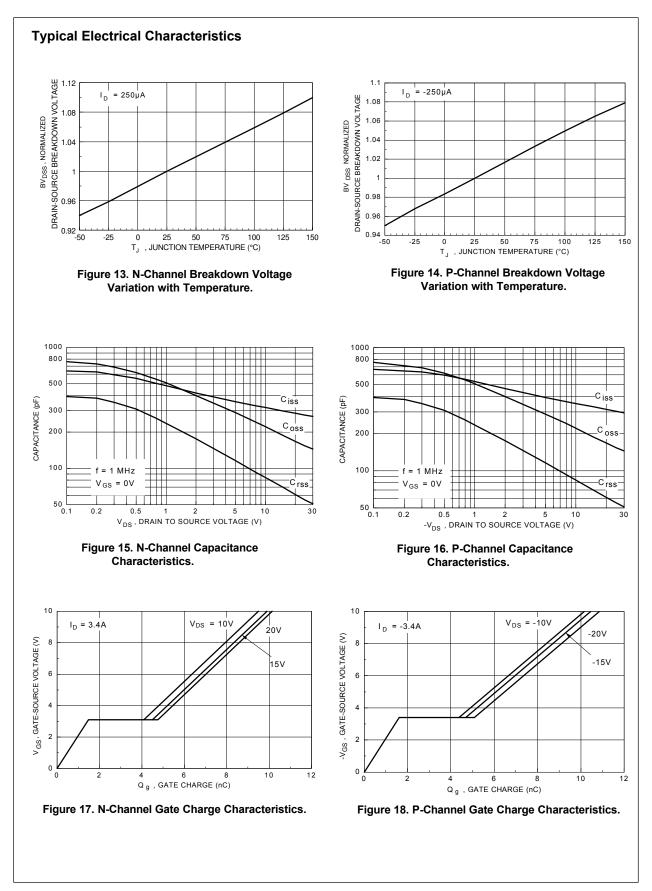
©1997 Fairchild Semiconductor Corporation

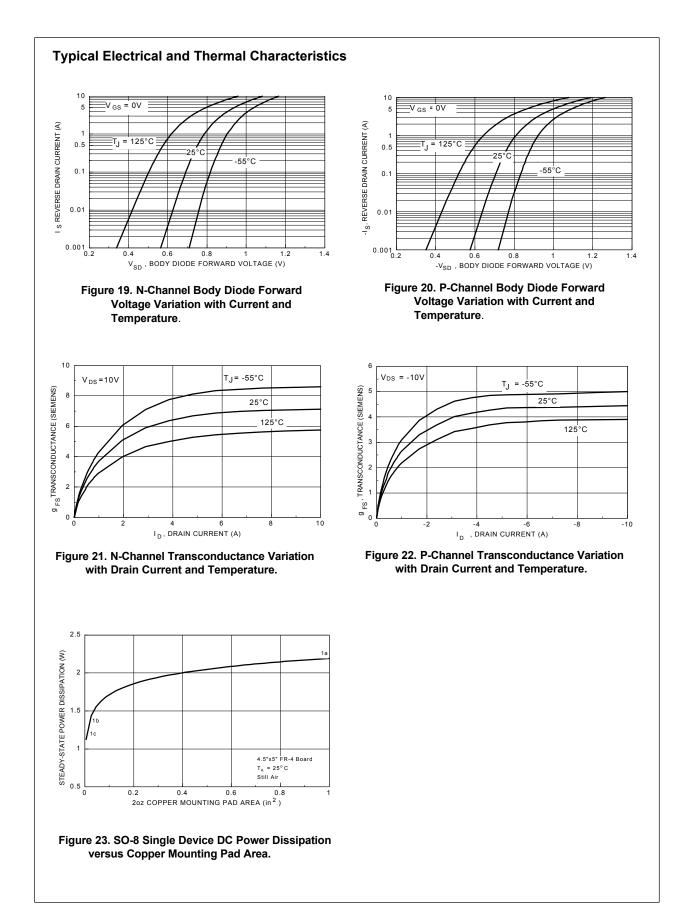
February 1996

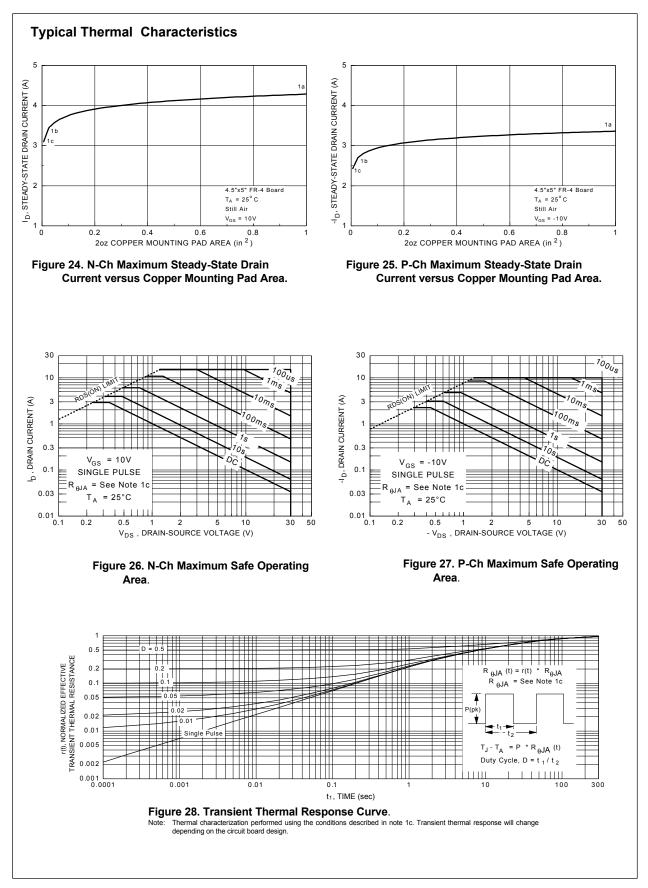
Symbol	Parameter	Conditions		Туре	Min	Тур	Max	Units
OFF CHA	RACTERISTICS							1
BV _{DSS}	Drain-Source Breakdown Voltage	V _{gs} = 0 V, I _p = 250 μA		N-Ch	30			V
	Ŭ	$V_{gs} = 0 V, I_p = -250 \mu A$		P-Ch	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{ps} = 24 \text{ V}, \text{V}_{qs} = 0 \text{ V}$		N-Ch			2	μA
			T_ = 55°C				25	μA
		V _{ps} = -24 V, V _{gs} = 0 V		P-Ch			-2	μA
			T_ = 55°C				-25	μA
GSSF	Gate - Body Leakage, Forward	V _{gs} = 20 V, V _{DS} = 0 V	1 -	All			100	nA
	Gate - Body Leakage, Reverse	V _{gs} = -20 V, V _{ps} = 0 V		All			-100	nA
	ACTERISTICS (Note 3)							
V _{GS(th)}	Gate Threshold Voltage	$V_{ps} = V_{gs}, I_{p} = 250 \mu A$		N-Ch	1	1.7	2.8	V
			T _J = 125°C		0.7	1.2	2.2	1
		$V_{ps} = V_{gs}, I_{p} = -250 \ \mu A$	I ¹	P-Ch	-1	-1.6	-2.8	
			T _J = 125°C		-0.85	-1.25	-2.5	1
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{gs} = 10 V, I _p = 3.4 A	L -	N-Ch		0.06	0.08	Ω
			T _J = 125°C			0.08	0.13	1
		V _{GS} = 4.5 V, I _D = 2.8 A				0.08	0.11	1
		V _{gs} = -10 V, I _p = -3.4 A		P-Ch		0.11	0.13	1
			T _J = 125°C			0.15	0.21	
		$V_{gs} = -4.5 \text{ V}, \ \text{I}_{p} = -2.8 \text{ A}$				0.17	0.2	
l _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$		N-Ch	10			Α
		V_{GS} = -10 V, V_{DS} = -5 V		P-Ch	-10			
9 _{FS}	Forward Transconductance	V _{DS} = 15 V, I _D = 3.4 A		N-Ch		6		S
		V _{DS} = -15 V, I _D = -3.4 A		P-Ch		4		
DYNAMIC	CHARACTERISTICS	-						
C _{iss}	Input Capacitance	N-Channel		N-Ch		300		pF
		$V_{DS} = 15 V, V_{GS} = 0 V,$ f = 1.0 MHz		P-Ch		330		
C _{oss}	Output Capacitance	D Channel		N-Ch		190		pF
		P-Channel $-V_{DS} = -15 V, V_{GS} = 0 V,$		P-Ch		190		
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		N-Ch		70		pF
				P-Ch		70		

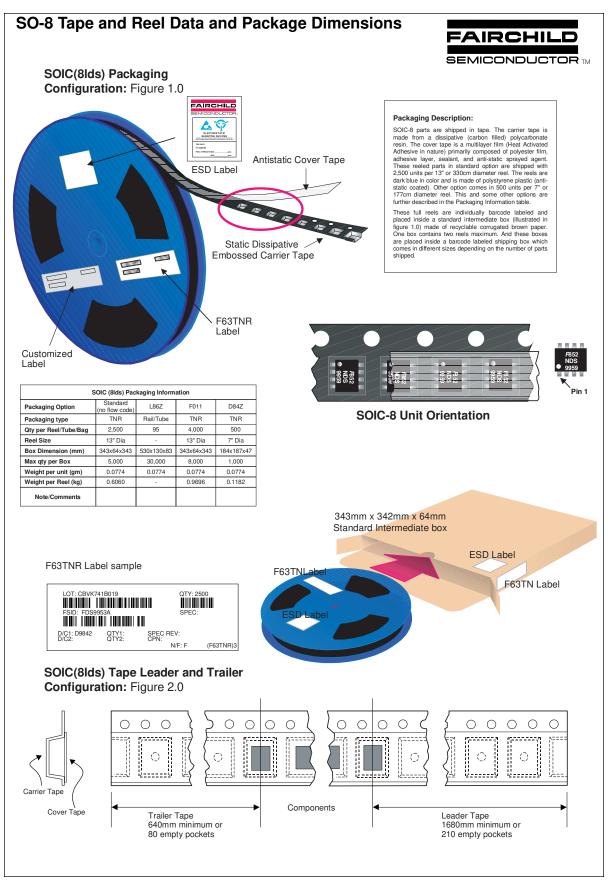
Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units	
WITCHI	NG CHARACTERISTICS (Note 3)	•						
D(on) Turn - On Delay Time		N-Channel	N-Ch		10	15	ns	
. ,		$V_{DD} = 10 V, I_{D} = 1 A,$	P-Ch		9	40		
r	Turn - On Rise Time	V_{GEN} = 10 V, R _{GEN} = 6 Ω	N-Ch		13	20	ns	
		P-Channel			21	40		
D(off)	Turn - Off Delay Time	$V_{\text{DD}} = -10 \text{ V}, \text{ I}_{\text{D}} = -1 \text{ A},$ $V_{\text{GEN}} = -10 \text{ V}, \text{ R}_{\text{GEN}} = 6 \Omega$	N-Ch		21	50	ns	
()		$V{\text{GEN}} = -10 \text{ V}, R_{\text{GEN}} = 0.32$	P-Ch		21	90		
ł	Turn - Off Fall Time		N-Ch		5	50	ns	
			P-Ch		8	50		
ວູ	Total Gate Charge	N-Channel	N-Ch		9.5	27	nC	
9		$V_{\rm DS} = 10 \rm V,$			10	25	-	
Q _{qs}	Gate-Source Charge	$I_{D} = 3.4 \text{ A}, V_{GS} = 10 \text{ V}$ P-Channel	N-Ch		1.5		-	
93		V _{DS} = -10 V,	P-Ch		1.6			
2 _{aq}	Gate-Drain Charge	$I_{\rm D} = -3.4 \text{ A}, V_{\rm GS} = -10 \text{ V}$	N-Ch		2.6			
gu			P-Ch		2.7		1	
DRAIN-SO	DURCE DIODE CHARACTERISTIC	CS AND MAXIMUM RATINGS						
3	Maximum Continuous Drain-Sour	rce Diode Forward Current	N-Ch			2.1	А	
2			P-Ch			-2.1	-	
/ _{sd}	Drain-Source Diode Forward	$V_{gs} = 0 V, I_s = 2.1 A (Note 2)$	N-Ch		0.8	1.2	V	
30	Voltage	$V_{gs} = 0 V, I_s = -2.1 A$ (Note 2)	P-Ch		-0.8	-1.2		
r	Reverse Recovery Time	N-Channel $V_{GS} = 0 V, I_F = 2.1 A, dI_F/dt = 100 A/\mu s$	N-Ch			100	ns	
		P-Channel V _{GS} = 0 V, I _F = -2.1 A, dI _F /dt = 100 A/µs	P-Ch			100		
design wh $P_D(t) =$ Typical R _e	sum of the junction-to-case and case-to-ambient the like R_{gcA} is determined by the user's board design. $\frac{T_J-T_A}{R_{0J}kh} = \frac{T_J-T_A}{R_{0J}t^R_{10}C_A(t)} = I_D^2(t) \times R_{DS}(_{ON})\hat{e}_{T_J}$ using the board layouts shown below on 4.5"x5" a. 50°C/W when mounted on a 1 in ² pad of 202 cpp b. 105°C/W when mounted on a 0.04 in ² pad of 202 c. 125°C/W when mounted on a 0.006 in ² pad of 202 c.	Permal resistance where the case thermal reference is defined as t FR-4 PCB in a still air environment: Per.	he solder mounting	surface of t	l	. R _{eJC} is guara	anteed by	
	1a QPPO IIII	1b	1c	999 999				

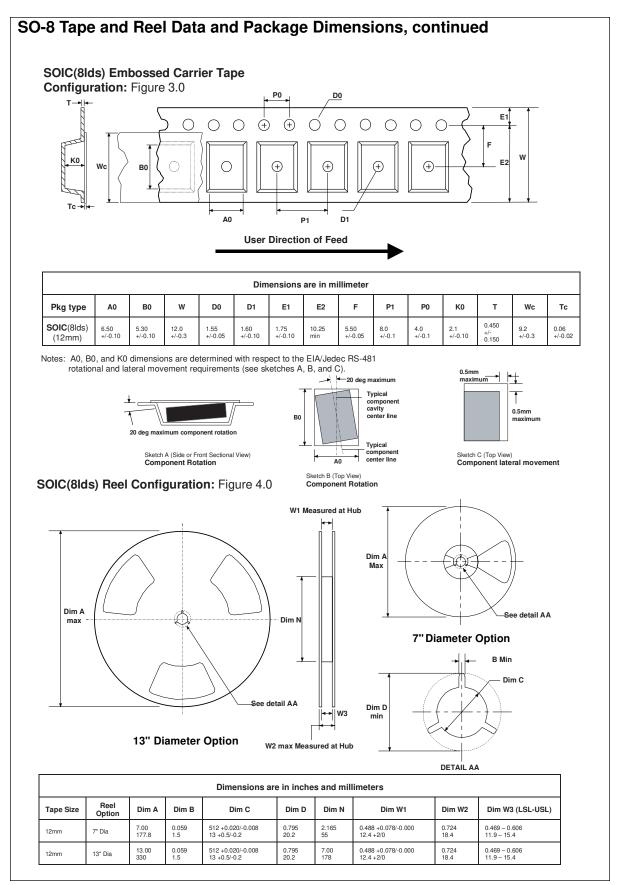

Scale 1 : 1 on letter size paper

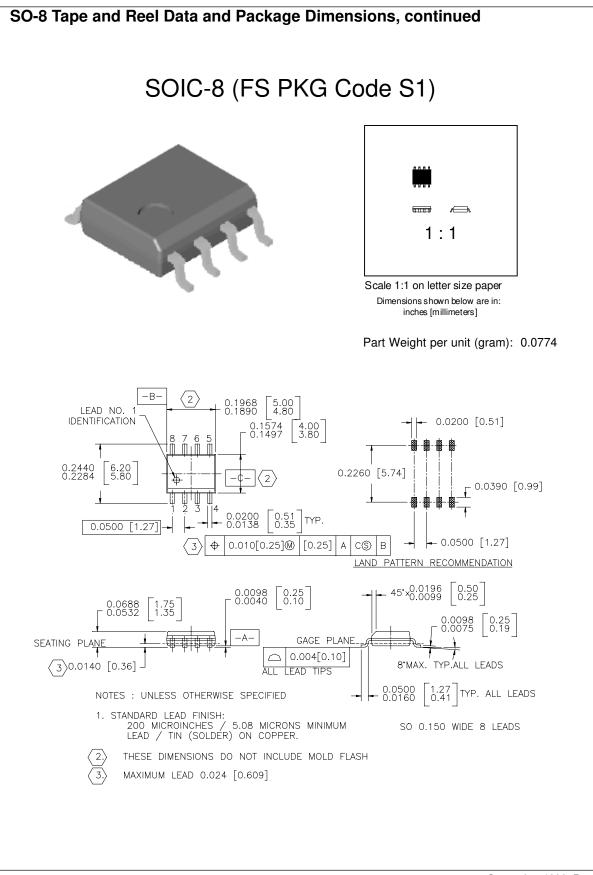

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.


NDS8852H Rev. C1




NDS8852H Rev. C1





July 1999, Rev. B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] CoolFET[™] CROSSVOLT[™] E²CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FAST[®] FAST[™] GTO[™] HiSeC[™] ISOPLANAR™ MICROWIRE™ POP™ PowerTrench™ QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.