imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet R09DS0038EJ0100 Rev.1.00 Apr 16, 2012

N-Channel GaAs HJ-FET, X to Ku Band Low Noise and High-Gain

FEATURES

- Low noise figure and high associated gain NF = 0.35 dB TYP., G_a = 14 dB TYP. @ f = 12 GHz, V_{DS} = 2 V, I_D = 10 mA NF = 0.35 dB TYP., G_a = 13.5 dB TYP. @ f = 12 GHz, V_{DS} = 2 V, I_D = 6 mA (Reference Value)
- 4-pin Micro-X plastic (S02) package

APPLICATIONS

- X to Ku band DBS LNB
- Other Ku band communication system

ORDERING INFORMATION

Part Number	Order Number	Package	Quantity	Marking	Supplying Form
NE3516S02-T1C	NE3516S02-T1C-A	S02	2 kpcs/reel	Р	8 mm wide embossed taping
NE3516S02-T1D	NE3516S02-T1D-A	package (Pb-Free)	10 kpcs/reel		 Pin 4 (Gate) faces the perforation side of the tape

Remark To order evaluation samples, please contact your nearby sales office. Part number for sample order: NE3516S02-A

ABSOLUTE MAXIMUM RATINGS (T_A = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	V _{DS}	4.0	V
Gate to Source Voltage	V _{GS}	-3.0	V
Drain Current	ID	I _{DSS}	mA
Gate Current	l _G	100	μA
Total Power Dissipation Note	P _{tot}	165	mW
Channel Temperature	T _{ch}	+125	°C
Storage Temperature	T _{stg}	-65 to +125	°C

Note: Mounted on 1.08 $\text{cm}^2 \times 1.0 \text{ mm}$ (t) glass epoxy PWB

RECOMMENDED OPERATING RANGE (T_A = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	V _{DS}	+1	+2	+3	V
Drain Current	ID	5	10	15	mA
Input Power	Pin	-	_	0	dBm

CAUTION Observe precautions when handling because these devices are sensitive to electrostatic discharge.

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	I _{GSO}	$V_{GS} = -3.0 \text{ V}$	-	0.5	10	μA
Saturated Drain Current	I _{DSS}	$V_{DS} = 2 V, V_{GS} = 0 V$	15	30	60	mA
Gate to Source Cut-off Voltage	V _{GS(off)}	$V_{DS} = 2V, I_D = 100 \ \mu A$	-0.2	-0.5	-1.3	V
Transconductance	gm	$V_{DS} = 2 V, I_{D} = 10 mA$	55	65	-	mS
Noise Figure	NF	$V_{DS} = 2 V$, $I_D = 10 mA$, $f = 12 GHz$	-	0.35	0.50	dB
Associated Gain	Ga		13	14	-	dB

STANDARD CHARACTERISTICS FOR REFERENCE ($T_A = +25^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Reference Value	Unit
Noise Figure	NF	$V_{DS} = 2 V, I_D = 6 mA, f = 12 GHz$	0.35	dB
Associated Gain	Ga		13.5	dB

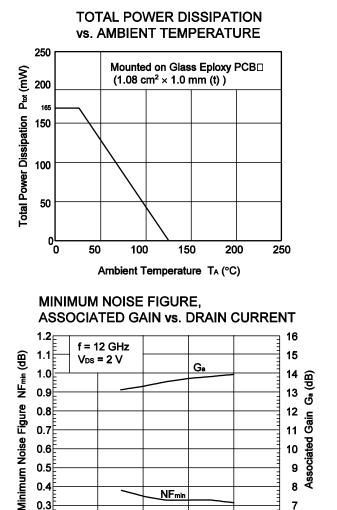
0.5

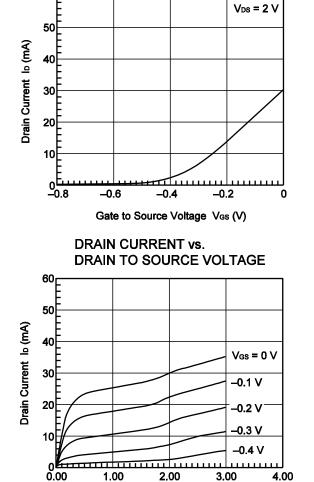
0.4

0.3

0.2

4


TYPICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise specified)


9 8

7

6

12

1.00

2.00

Drain to Source Voltage VDS (V)

3.00

4.00

DRAIN CURRENT vs.

60ı

GATE TO SOURCE VOLTAGE

Drain Current ID (mA)

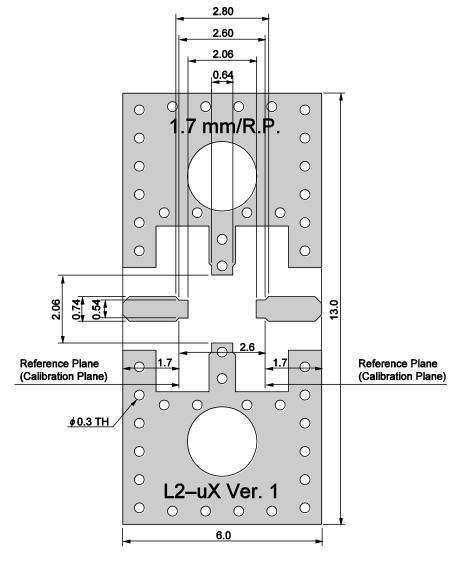
8

10

NFmin

6

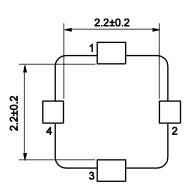
Remark The graph indicates nominal characteristics.


S-PARAMETERS

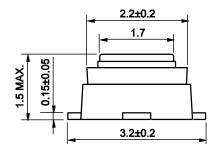
□ S-parameters and noise parameters are provided on our web site in a form (S2P) that enables direct import to microwave circuit simulators without keyboard inputs.

- □ Click here to download S-parameters.
- $\Box \text{ [Products]} \rightarrow \text{[RF Devices]} \rightarrow \text{[Device Parameters]}$
- URL http://www.renesas.com/products/microwave/download/parameter/

RF MEASURING LAYOUT PATTERN (REFERENCE ONLY) (UNIT: mm)


RT/duroid 5880/ROGERS t = 0.254 mm εr = 2.20 tan delta = 0.0009 @10 GHz

PACKAGE DIMENSIONS


S02 (UNIT: mm)

(Top View)

(Bottom View)

(Side View)

PIN CONNECTIONS

- 1. Source
- 2. Drain
- 3. Source
- 4. Gate

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) : 260°C or b		IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C : 120±30 seconds		
	Maximum number of reflow processes : 3 times		
	Maximum chlorine content of rosin flux (% mass)	: 0.2% (Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2% (Wt.) or below	

CAUTION

Do not use different soldering methods together (except for partial heating).

NE3516S02

CEL California Eastern Laboratories

Caution GaAs Products	This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.
	 Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
	 Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
	Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
	• Do not burn, destroy, cut, crush, or chemically dissolve the product.
	Do not lick the product or in any way allow it to enter the mouth.

Revision	History
-----------------	---------

NE3516S02 Data Sheet

		Description		
Rev.	Date	Page Summary		
1.00	Apr 16, 2012	-	First edition issued	