

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

NE/SA5234

Matched quad high-performance low-voltage operational amplifier

Product data Supersedes data of 2001 Aug 03 File under Integrated Circuits, IC11 Handbook 2002 Feb 22

Matched quad high-performance low-voltage operational amplifier

NE/SA5234

DESCRIPTION

The NE/SA5234 is a matched, low voltage, high performance quad operational amplifier. Among its unique input and output characteristics is the capability for both input and output rail-to-rail operation, particularly critical in low voltage applications. The output swings to less than 50 mV of both rails across the entire power supply range. The NE/SA5234 is capable of delivering 5.5 V peak-to-peak across a 600 Ω load and will typically draw only 700 μ A per amplifier. The bandwidth is 2.5 MHz and the 1% settling time is 1.4 μ s.

FEATURES

- Wide common-mode input voltage range: 250 mV beyond both rails
- Output swing within 50 mV of both rails
- Functionality to 1.8 V typical
- Low current consumption: 700 μA per amplifier
- ± 15 mA output current capability
- Unity gain bandwidth: 2.5 MHz
- Slew rate: 0.8 V/μs
- Low noise: 25 nV/√Hz
- Electrostatic discharge protection
- Short-circuit protection
- Output inversion prevention

PIN CONFIGURATION

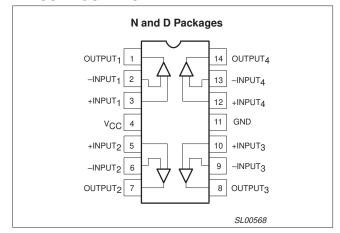


Figure 1. Pin configuration.

APPLICATIONS

- Automotive electronics
- Signal conditioning and sensing amplification
- Portable instrumentation
 - Test and measurement
 - Medical monitors and diagnostics
 - Remote meters
- Audio equipment
- Security systems
- Communications
 - Pagers
 - Cellular telephone
 - LAN
 - 5 V Datacom bus
- Error amplifier in motor drives
- Transducer buffer amplifier

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG#
14-Pin Plastic Small Outline (SO) package	0 °C to +70 °C	NE5234D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	0 °C to +70 °C	NE5234N	SOT27-1
14-Pin Plastic Small Outline (SO) package	-40 °C to +85 °C	SA5234D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	-40 °C to +85 °C	SA5234N	SOT27-1

Matched quad high-performance low-voltage operational amplifier

NE/SA5234

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Single supply voltage	7	V
V _{ESD}	ESD protection voltage at any pin ⁵ human body model robot model	2000 200	V
V _S	Dual supply voltage	±3.5	V
V_{DP}	Voltage at any device pin ¹	V _S ±0.5	V
I _{DP}	Current into any device pin ¹	±50	mA
V _{IN}	Differential input voltage ²	0.5	V
V _{CM}	Common-mode input voltage (positive)	V _{CC} + 0.5	V
V _{CM}	Common-mode input voltage (negative)	V _{EE} – 0.5	V
P _D	Power dissipation ³	500	mW
Tj	Operating junction temperature ³	+150	°C
V _{SC}	Supply voltage allowing indefinite output short circuit to either rail ^{3,4}	7	V
T _{stg}	Storage temperature range	-65 to +150	°C
T _{sld}	Lead soldering temperature (10 sec max)	+230	°C
θ_{JA}	Thermal impedance 14 pin Plastic DIP 14 pin Plastic SO	80 115	°C/W °C/W

NOTES:

- 1. Each pin is protected by ESD diodes. The voltage at any pin is limited by the ESD diodes.
- The differential input of each amplifier is limited by two internal diodes, connected in parallel and opposite to each other. For more differential input range, use differential resistors in series with the input pins.
- 3. The maximum operating junction temperature is +150 °C. At elevated temperatures, devices must be derated according to the package thermal resistance and device mounting conditions. Derates above +25 °C: N package at 9.5 mW/°C; D package at 6.25 mW/°C.
- 4. Simultaneous short circuits of two or more amplifiers to the positive or negative rail can exceed the power dissipation ratings and cause eventual destruction of the device.
- 5. Guaranteed by design.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Single supply voltage	+2 to +5.5	V
V _S	Dual supply voltage	±1 to ±2.75	V
V _{CM}	Common-mode input voltage (positive)	V _{CC} + 0.25	V
V _{CM}	Common-mode input voltage (negative)	V _{EE} – 0.25	V
T _{amb}	Temperature NE5234 SA5234	0 to +70 -40 to +85	°C °C

2002 Feb 22

Matched quad high-performance low-voltage operational amplifier

NE/SA5234

DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = 2 \text{ V to } 5.5 \text{ V}$; $V_{FF} = 0 \text{ V}$; $T_{amb} = 25 \text{ °C}$; $V_{FF} < V_{CM} < V_{CC}$; unless otherwise stated.

		TECT COMPITIONS				ITS				
SYMBOL	PARAMETER	TEST CONDITIONS		NE5234	ļ		SA5234		UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX		
		V _{CC} = 5.5 V		2.8	4.0		2.8	4.0		
I _{CC}	Supply current	V _{CC} = 5.5 V over full temperature range		3.0	4.6		3.2	4.8	mA	
				±0.2	±4		±0.2	±4		
V _{OS}	Offset voltage	Over full temperature range		±0.4	±5		±0.6	±5	mV	
$\Delta V_{OS}/\Delta T$	Offset voltage drift with temperature			4			4		μV/°C	
	Offset voltage difference between any amplifiers in			0.4	3		0.4	3		
ΔV_{OS}	the same package at the same common mode level ¹	Over full temperature range		0.8	4		1.2	4	mV	
				±3	±20		±3	±30		
los	Offset current	Over full temperature range		±4	±30		±6	±60	nA	
$\Delta I_{OS}/\Delta T$	Offset current drift with temperature			0.02	±0.3		0.03	±0.3	nA/°C	
		$V_{EE} < V_{CM} < V_{EE} + 0.5 V$	-200	-90		-200	-90			
I _B	Input bias current ¹	Over full temperature range	-225	-100		-250	-150		nA	
ıB	input bias current	V_{EE} +1 V < V_{CM} < V_{CC}		25	70		25	75		
		Over full temperature range		35	100		35	120		
$\Delta I_{\text{B}}/\Delta T$	Input bias current drift with temperature			0.5			0.5		nA/°C	
		$V_{EE} < V_{CM} < V_{EE} + 0.5V$		10	30		10	30		
Δl_{B}	Input bias current difference between any amplifier in the	Over full temperature range		25	50		50	70	nA	
	same package at the same common mode level.	V_{EE} +1V < V_{CM} < V_{CC}		5	20		5	20	'"`	
	oonmen mede level.	Over full temperature range		15	30		25	50		
		$V_{OS} \le 6 \text{ mV}$	V _{EE} -0.25		V _{CC} +0.25	V _{EE} -0.25		V _{CC} +0.25		
V _{CM}	Common-mode input range	V _{OS} ≤ 6 mV over full temperature range	V _{EE} -0.1		V _{CC} +0.1	V _{EE} -0.1		V _{CC} +0.1	٧	
	Common-mode rejection	$V_{EE} < V_{CM} < V_{EE} + 0.5 V;$ $V_{EE} + 1 V < V_{CM} < V_{CC}$	80	100		90	100			
CMRR	ratio, small signal	Over full temperature range	75			80			dB	
	Common-mode rejection	$V_{EE} < V_{CM} < V_{CC}$	65	90		65	100			
	ratio, large signal	Over full temperature range	60			60				
DODD	Davis and the state of the stat	$V_{EE} < V_{CM} < V_{CC}$	80	100		80	100			
PSRR	Power supply rejection ratio	Over full temperature range	80	90		80	90		dB	
	Peak load current, sink and		10	12		10	12			
ال	source	Over full temperature range	5	8		5	8		mA	

2002 Feb 22

DC ELECTRICAL CHARACTERISTICS (Continued)

					LIM	IITS			
SYMBOL	PARAMETER	IETER TEST CONDITIONS					SA5234		UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
			90	110		90	110		
A _{VOL}	Open-loop voltage gain	Over full temperature range		90			90		dB
		$I_{PEAK} = 0.1 \text{ mA}$	V _{EE} +0.05		V _{CC} -0.05	V _{EE} +0.1		V _{CC} -0.1	
	Output voltage swing	I _{PEAK} = 10 mA	V _{EE} +0.25		V _{CC} -0.25	V _{EE} +0.25		V _{CC} -0.25	V
V _{OUT}	3	I _{PEAK} = 5 mA over full temperature range	V _{EE} +0.22		V _{CC} -0.2	V _{EE} +0.2		V _{CC} -0.2	
	Output voltage swing for	$R_L = 2 k\Omega$	V _{EE} +0.2		V _{CC} -0.2	V _{EE} +0.2		V _{CC} -0.2	V
	$V_{CC} = 2.75 \text{ V}; V_{EE} = -2.75 \text{ V}$	$R_L = 600 \Omega$	V _{EE} +0.25		V _{CC} -0.25	V _{EE} +0.25		V _{CC} -0.25	V

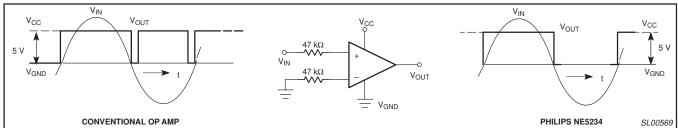
NOTE:

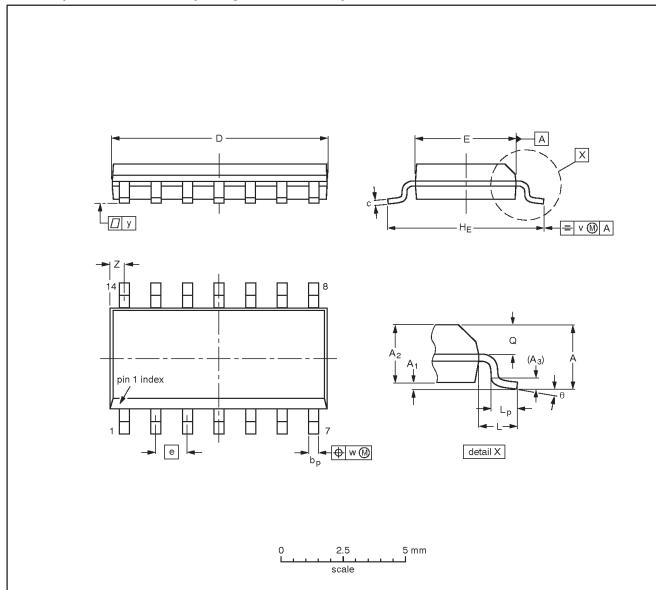
AC ELECTRICAL CHARACTERISTICS

 T_{amb} = +25 °C; V_{CC} = 2 V to 5.5 V; R_L = 10 k Ω ; C_L = 100 pF; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS		NE5234		S	UNITS		
			MIN	TYP	MAX	MIN	TYP	MAX	
SR	Slew rate	Over full temperature range	0.5	0.8		0.5	0.8		V/μs
BW	Unity gain bandwidth: -3 dB	Over full temperature range	2	2.5	4.0	2	2.5	4.0	MHz
θ_{M}	Phase Margin	C _L = 50 pF		55			55		deg
t _S	1% settling time	A _V = 1, 1 V step		1.4			1.4		μs
V _N	Input referred voltage noise	$A_V = 1$; $R_S = 0 \Omega$, at 1 kHz		25			25		nV/Hz ^{1/2}
THD	Total harmonic distortion	10 kHz, 1 V _{P-P} , A _V = 1		0.1			0.1		%

OUTPUT INVERSION PREVENTION




Figure 2. Output inversion prevention.

2002 Feb 22 5

These parameters are measured for V_{EE} < V_{CM} < V_{EE}+0.5 V and for V_{EE}+1 V < V_{CM} < V_{CC}. By design these parameters are intermediate for common mode ranges between the measured regions.

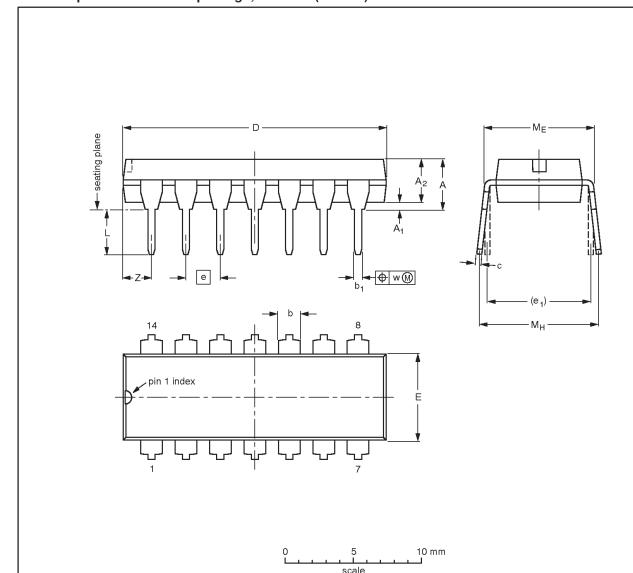
SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	>	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	0.019 0.014	0.0100 0.0075	0.35 0.34	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note


1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT108-1	076E06	MS-012			-97-05-22 99-12-27

2002 Feb 22 6

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFEF	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001	SC-501-14		95-03-11 99-12-27

2002 Feb 22 7

Matched quad high-performance low-voltage operational amplifier

NE/SA5234

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 03-02

9397 750 09514

Let's make things better.

Philips Semiconductors

Document order number:

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.