imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Ignition IGBT 20 A, 450 V, N–Channel D²PAK

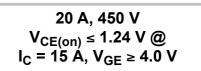
This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Overvoltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

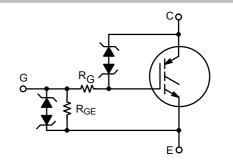
Features

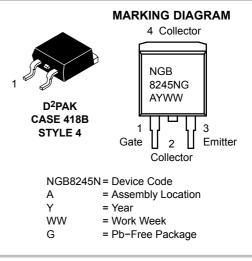
- Ideal for Coil-on-Plug and Driver-on-Coil Applications
- D²PAK Package Offers Smaller Footprint for Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate–Collector Voltage Clamp Limits Stress Applied to Load
- Low Threshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- This is a Pb–Free Device

Applications

• Ignition Systems


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Symbol	Value	Unit					
V _{CES}	500	V					
V _{CER}	500	V					
V_{GE}	± 15	V					
Ι _C	20 50	A _{DC} A _{AC}					
Ι _G	1.0	mA					
Ι _G	20	mA					
ESD	2.0	kV					
ESD	8.0	kV					
ESD	500	V					
PD	150 1.0	W W/∘C					
T _J , T _{stg}	-55 to +175	°C					
	Symbol V _{CES} V _{GE} I _C I _G I _G ESD ESD ESD	$\begin{tabular}{ c c c } \hline Symbol & Value \\ \hline V_{CES} & 500 \\ \hline V_{CER} & 500 \\ \hline V_{GE} & \pm 15 \\ \hline I_C & 20 \\ 50 \\ \hline I_G & 1.0 \\ \hline I_G & 20 \\ \hline ESD & 2.0 \\ \hline ESD & 2.0 \\ \hline ESD & 8.0 \\ \hline ESD & 500 \\ \hline P_D & 150 \\ 1.0 \\ \hline \end{tabular}$					


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Littelfuse.com

ORDERING INFORMATION

Device	Package	Shipping [†]
NGB8245NT4G	D ² PAK (Pb-Free)	800 / Tape & Reel

UNCLAMPED COLLECTOR-TO-EMITTER AVALANCHE CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Single Pulse Collector–to–Emitter Avalanche Energy V_{CC} = 50 V, V_{GE} = 5.0 V, Pk I _L = 9.5 A, R _G = 1 k Ω , L = 3.5 mH, Starting T _C = 150°C	E _{AS}	158	mJ
THERMAL CHARACTERISTICS			

Thermal Resistance, Junction-to-Case	$R_{ ext{ heta}JC}$	1.0	°C/W
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{ hetaJA}$	62.5	°C/W
Maximum Temperature for Soldering Purposes, 1/8" from case for 5 seconds (Note 2)	ΤL	275	°C

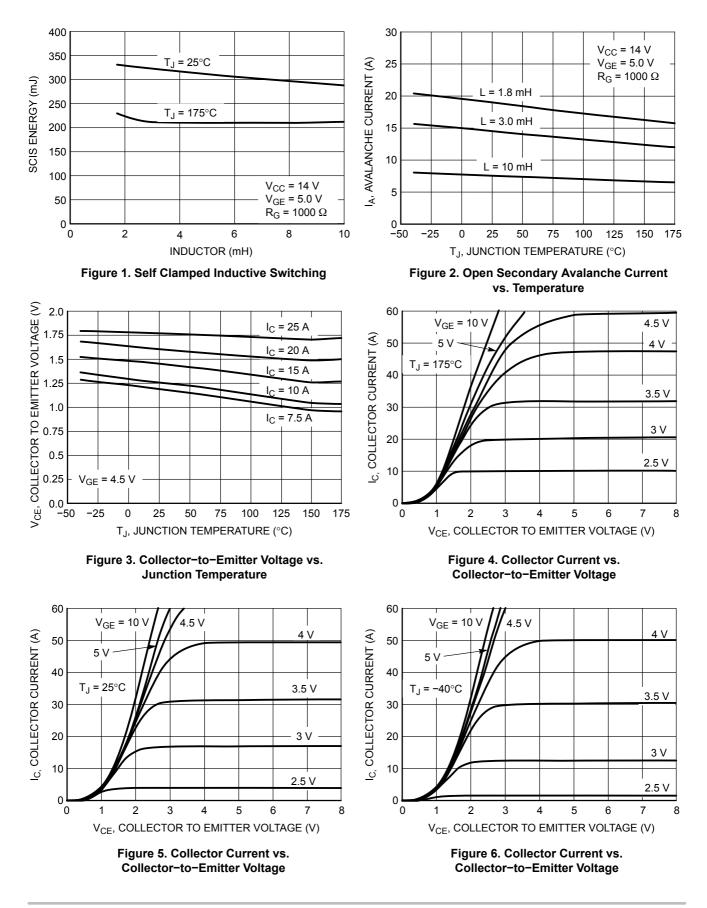
When surface mounted to an FR4 board using the minimum recommended pad size.
For further details, see Soldering and Mounting Techniques Reference Manual: SOLDERRM/D.

ELECTRICAL CHARACTERISTICS

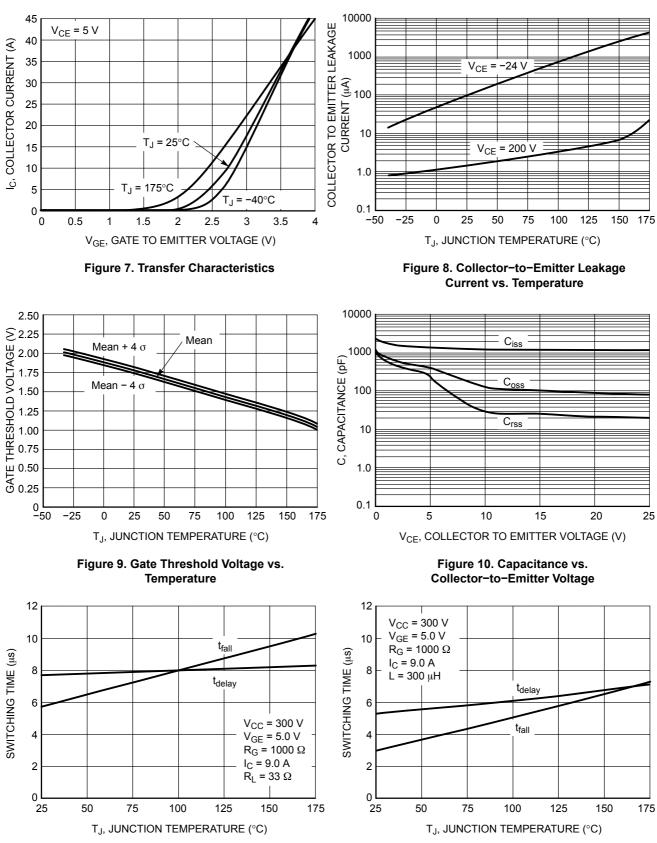
Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Мах	Unit
OFF CHARACTERISTICS (Note 3)							
Collector-Emitter Clamp Voltage	BV _{CES}	I _C = 2.0 mA	$T_J = -40^{\circ}C$ to $175^{\circ}C$	430	450	470	V
		I _C = 10 mA	$T_J = -40^{\circ}C$ to $175^{\circ}C$	450	475	500	
		I_{C} = 12 A, L = 3.5 mH, R _G = 1 kΩ (Note 4)	$T_J = -40^{\circ}C$ to $175^{\circ}C$	420	450	480	
Collector-Emitter Leakage Current	I _{CES}	V_{CE} = 15 V, V_{GE} = 0 V	T _J = 25°C		0.002	1.0	μΑ
		V_{CE} = 250 V, R_G = 1 k Ω	$T_J = -40^{\circ}C$ to $175^{\circ}C$	0.5	2.0	100	
Reverse Collector-Emitter Clamp	B _{VCES(R)}		T _J = 25°C	30	33	39	V
Voltage		I _C = −75 mA	T _J = 175°C	31	35	40	-
			T _J = −40°C	30	31	37	
Reverse Collector-Emitter Leakage Current	I _{CES(R)}	(R) V _{CE} = -24 V	T _J = 25°C	-	0.4	1.0	mA
			T _J = 175°C	-	20	35	
			$T_J = -40^{\circ}C$	-	0.04	0.2	
Gate-Emitter Clamp Voltage	BV _{GES}	$I_G = \pm 5.0 \text{ mA}$	$T_J = -40^{\circ}C$ to $175^{\circ}C$	12	12.5	14	V
Gate-Emitter Leakage Current	I _{GES}	V_{GE} = ±5.0 V	$T_J = -40^{\circ}C$ to $175^{\circ}C$	200	316	350	μΑ
Gate Resistor	R _G		$T_J = -40^{\circ}C$ to $175^{\circ}C$		70		Ω
Gate-Emitter Resistor	R _{GE}		$T_J = -40^{\circ}C$ to $175^{\circ}C$	14.25	16	25	kΩ
ON CHARACTERISTICS (Note 3)			•	•	•		•
Gate Threshold Voltage	V _{GE(th)}		T _J = 25°C	1.5	1.8	2.1	V
		I _C = 1.0 mA, V _{GE} = V _{CE}	T _J = 175°C	0.7	1.0	1.3	
			T _J = −40°C	1.7	2.0	2.3	
Threshold Temperature Coefficient (Negative)				4.0	4.6	5.2	mV/°C
Collector-to-Emitter On-Voltage	V _{CE(on)}	$I_{\rm C}$ = 10 A, $V_{\rm GE}$ = 3.7 V	$T_J = -40^{\circ}C$ to $175^{\circ}C$	0.8	1.11	1.97	V
					4.40	4.0-	1

Gate Threshold Voltage	V _{GE(th)}		T _J = 25°C	1.5	1.8	2.1	V
		I_C = 1.0 mA, V_{GE} = V_{CE}	T _J = 175°C	0.7	1.0	1.3	
			T _J = −40°C	1.7	2.0	2.3	
Threshold Temperature Coefficient (Negative)				4.0	4.6	5.2	mV/°C
Collector-to-Emitter On-Voltage	V _{CE(on)}	I _C = 10 A, V _{GE} = 3.7 V	$T_J = -40^{\circ}C$ to $175^{\circ}C$	0.8	1.11	1.97	V
		I _C = 10 A, V _{GE} = 4.0 V	$T_J = -40^{\circ}C$ to $175^{\circ}C$	0.8	1.10	1.85	
		I _C = 15 A, V _{GE} = 4.0 V	$T_J = -40^{\circ}C$ to $175^{\circ}C$	0.8	1.24	2.00	
Forward Transconductance	gfs	$I_{\rm C}$ = 6.0 A, $V_{\rm CE}$ = 5.0 V	T _J = 25°C	10	19	25	Mhos

DYNAMIC CHARACTERISTICS (Note 3)


Input Capacitance	C _{ISS}			1100	1400	1600	pF
Output Capacitance	C _{OSS}	f = 10 kHz, V _{CE} = 25 V	T _J = 25°C	50	65	80	
Transfer Capacitance	C _{RSS}			15	20	25	

ELECTRICAL CHARACTERISTICS


Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
	lote 3)	·	·				
Turn–On Delay Time (Resistive) 10% V_{GE} to 10% I_{C}	t _{d(on)R}	V _{CC} = 14 V, R _I = 1.0 Ω,	$T_J = -40^{\circ}C$ to $175^{\circ}C$	0.1	1.0	2.0	μS
Rise Time (Resistive) 10% $I_{\rm C}$ to 90% $I_{\rm C}$	t _{rR}	$R_{\rm G} = 1.0 \ \rm k\Omega, \ V_{\rm GE} = 5.0 \ \rm V$	$T_J = -40^{\circ}C$ to $175^{\circ}C$	1.0	3.4	6.0	
Turn–Off Delay Time (Resistive) 90% V_{GE} to 90% I_C	t _{d(off)} R	V _{CC} = 14 V, R _I = 1.0 Ω,	$T_J = -40^{\circ}C$ to $175^{\circ}C$	2.0	4.5	8.0	μS
Fall Time (Resistive) 90% I _C to 10% I _C	t _{fR}	$R_{G} = 1.0 \text{ k}\Omega, V_{GE} = 5.0 \text{ V}$	$T_J = -40^{\circ}C$ to $175^{\circ}C$	3.0	8.0	12	
Turn–Off Delay Time (Inductive) 90% V_{GE} to 90% I_C	t _{d(off)L}	$V_{CE} = BV_{CES}, L = 0.5mH,$	$T_J = -40^{\circ}C$ to $175^{\circ}C$	6.5	9.7	12.5	μS
Fall Time (Inductive) 90% I _C to 10% I _C	t _{fL}	R _G = 1.0 kΩ, I _C = 10 A, V _{GE} = 5.0 V	$T_J = -40^{\circ}C$ to $175^{\circ}C$	6.0	8.3	11	

Electrical Characteristics at temperature other than 25°C, Dynamic and Switching characteristics are not subject to production testing.
Not subject to production testing.

TYPICAL ELECTRICAL CHARACTERISTICS

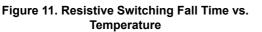


Figure 12. Inductive Switching Fall Time vs. Temperature

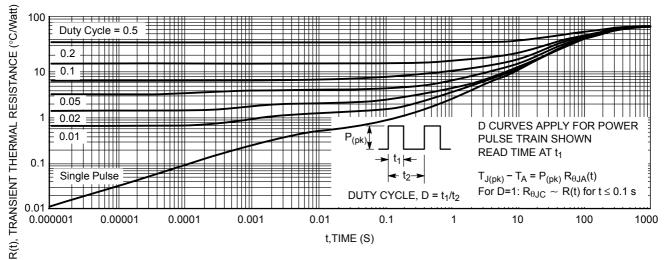


Figure 13. Minimum Pad Transient Thermal Resistance (Non-normalized Junction-to-Ambient)

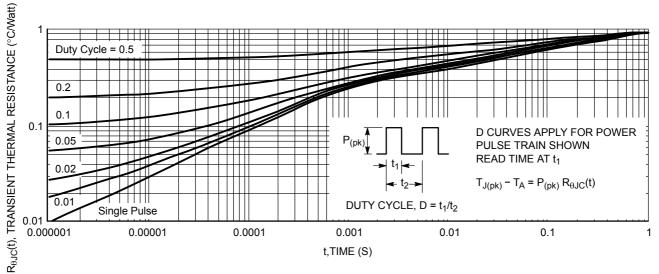
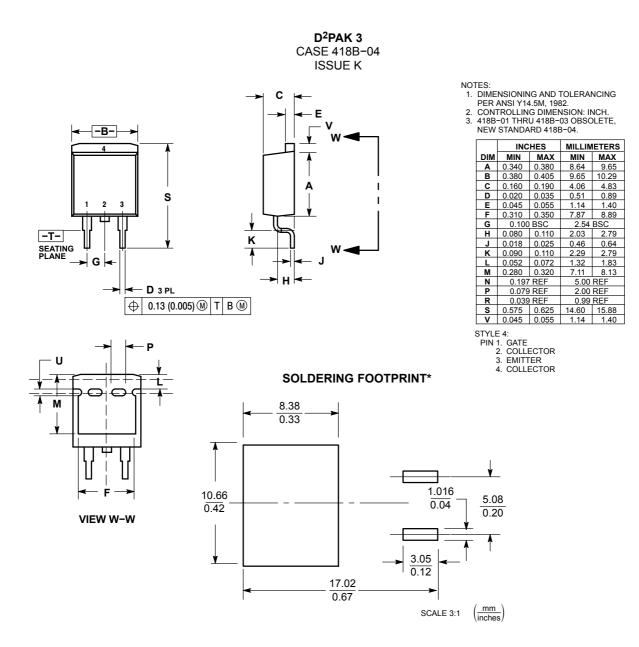



Figure 14. Best Case Transient Thermal Resistance (Non-normalized Junction-to-Case Mounted on Cold Plate)

6

PACKAGE DIMENSIONS

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com

7