

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IGBT 600V, 4.5A, N-Channel

The state of the s

www.onsemi.com

Features

- Reverse Conducting II IGBT
- IGBT V_{CE}(sat)=1.7V (typ) [I_C=3A, V_{GE}=15V]
- IGBT tf=75ns (typ)
- Diode V_F=1.5V (typ) [I_F=3A]
- Diode t_{rr}=65ns (typ)
- 5µs Short Circuit Capability

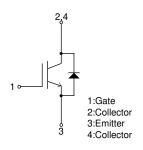
Applications

• General Purpose Inverter

Specifications

Absolute Maximum Ratings at Ta=25°C, Unless otherwise specified

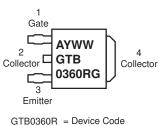
Paramete	Symbol	Value	Unit	
Collector to Emitter Voltage	VCES	600	V	
Gate to Emitter Voltage	V _{GES}	±20	V	
Collector Current (DC)	@Tc=25°C *2	@Tc=25°C *2		Α
Limited by Tjmax	@Tc=100°C *2		4.5	Α
Collector Current (Peak)	ICP	10	Δ.	
Pulse width Llimited by Tjma		12	Α	
Diode Average Output Curre	lo	4.5	Α	
Power Dissipation	PD	40	14/	
Tc=25°C (Our ideal heat dissi		49	W	
Junction Temperature	Tj	175	°C	
Storage Temperature	Tstg	–55 to +175	°C	


Note: *1 Collector Current is calculated from the following formula.

$$I_{C}(Tc) = \frac{Tjmax - Tc}{R_{th}(j-c) \times V_{CE}(sat) (I_{C}(Tc))}$$

*2 Our condition is radiation from backside.

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminum.


Electrical Connection N-Channel

DPAK CASE 369C

Marking Diagram

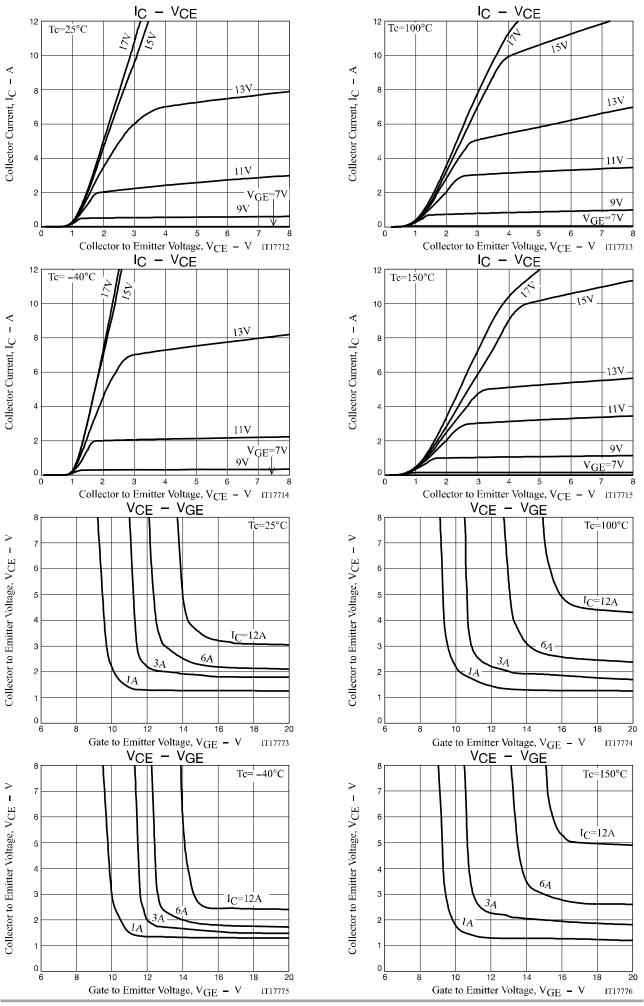
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

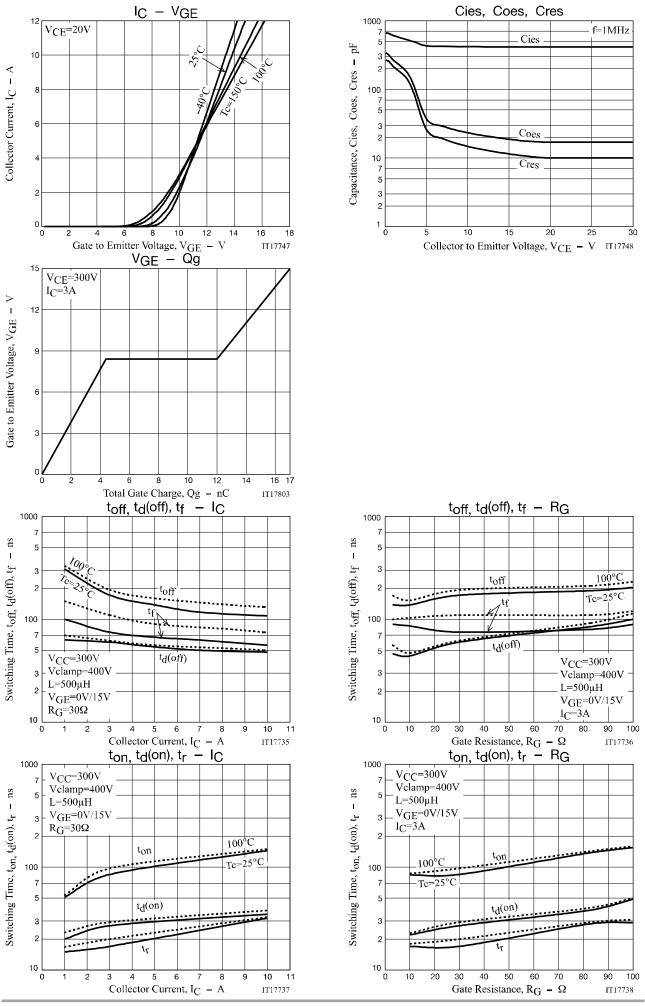
ORDERING INFORMATION

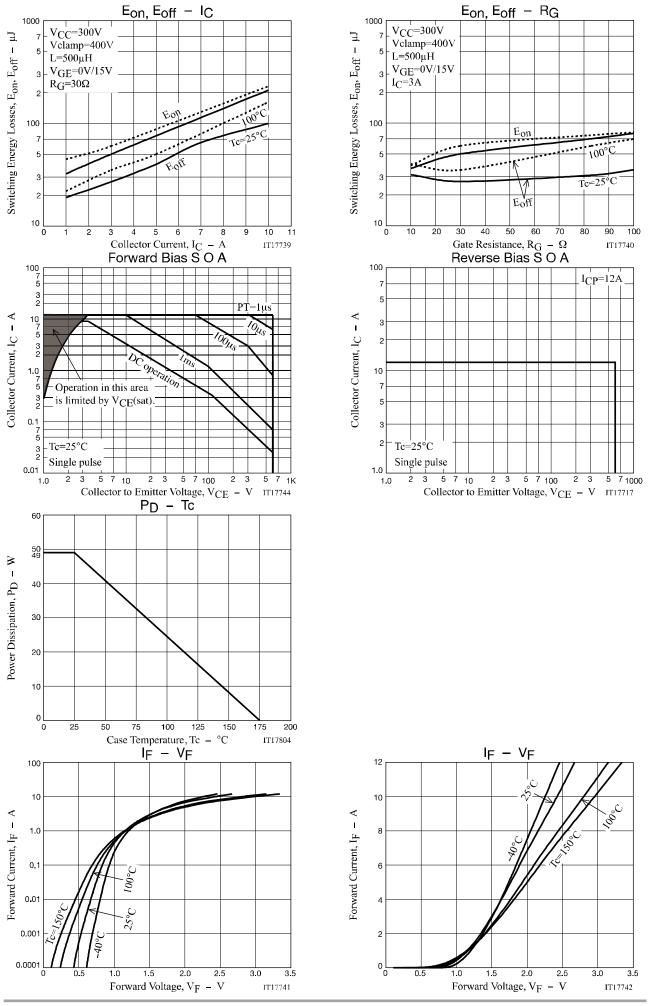
See detailed ordering and shipping information on page 8 of this data sheet.

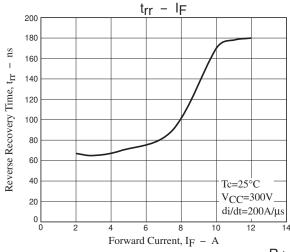
Electrical Characteristics at Ta=25°C, Unless otherwise specified

Developation	Cumbal	Conditions		Value			11.2
Parameter	Symbol			min	typ	max	Unit
Collector to Emitter Breakdown Voltage	V(BR)CES	I _C =1mA, V _{GE} =0V		600			٧
Collector to Emitter Cut off Current	1	V 000V V 0V	Tc=25°C			10	μА
Collector to Emiller Cut oil Current	ICES	V _{CE} =600V, V _{GE} =0V	Tc=150°C			1	mA
Gate to Emitter Leakage Current	IGES	V _{GE} =±20V, V _{CE} =0V				±100	nA
Gate to Emitter Threshold Voltage	V _{GE} (th)	V _{CE} =20V, I _C =80μA		4.5		7.0	٧
Callantanta Fasittan Catamatian Valtana	\/(\)	Tc=25°C	Tc=25°C		1.7	2.1	٧
Collector to Emitter Saturation Voltage	V _{CE} (sat)	V _{GE} =15V, I _C =3A	Tc=100°C		1.9	2.3	>
Forward Diode Voltage	VF	I _F =3A			1.5	2.1	>
Input Capacitance	Cies	V _{CE} =20V, f=1MHz			415		pF
Output Capacitance	Coes				17		pF
Reverse Transfer Capacitance	Cres				10		pF
Turn-ON Delay Time	t _d (on)	V _{CC} =300V, I _C =3A R _G =30Ω, L=500μH V _{GE} =0V/15V Vclamp=400V T _C =25°C See Fig.1, See Fig.2			27		ns
Rise Time	t _r				17		ns
Turn-ON Time	ton				85		ns
Turn-OFF Delay Time	t _d (off)				59		ns
Fall Time	tf				75		ns
Turn-OFF Time	toff				172		ns
Turn-ON Energy	Eon				50		μJ
Turn-OFF Energy	Eoff				27		μЈ
Total Gate Charge	Qg	V _{CE} =300V, V _{GE} =15V, I _C =3A			17		nC
Gate to Emitter Charge	Qge				4.4		nC
Gate to Collector "Miller" Charge	Qgc				7.6		nC
Diode Reverse Recovery Time	t _{rr}	I _F =3A,di/dt=200A/μs, V _{CC} =300V, See Fig.3			65		ns


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Thermal Characteristics at Ta=25°C, Unless otherwise specified


Parameter	Symbol	Conditions	Value	Unit
Thermal Resistance IGBT (Junction to Case)	Rth(j-c) (IGBT)	Tc=25°C (Our ideal heat dissipation condition) *2	3.06	°C/W
Thermal Resistance (Junction to Ambient)	Rth(j-a)		100	°C/W


Note: *2 Our condition is radiation from backside.

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminum.

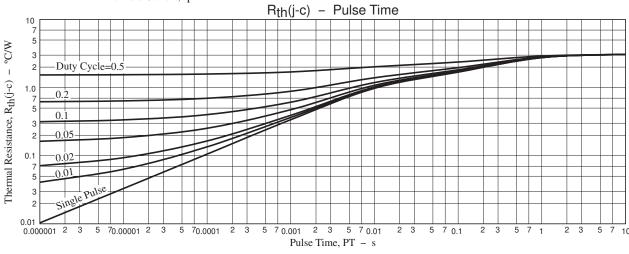


Fig.1 Switching Time Test Circuit

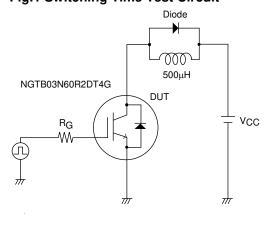


Fig.2 Timing Chart

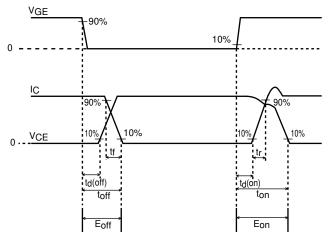
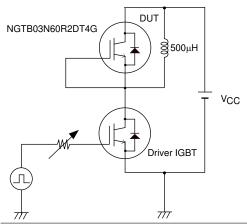
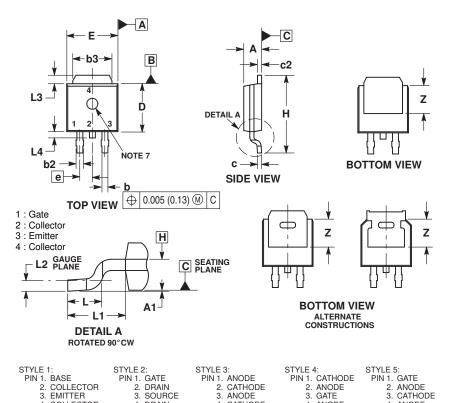



Fig.3 Reverse Recovery Time Test Circuit


Package Dimensions

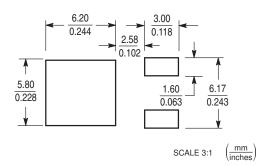
DPAK (SINGLE GAUGE)

2. COLLECTOR 3. EMITTER

4. COLLECTOR

CASE 369C ISSUE F

STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:
PIN 1. MT1	PIN 1. GATE	PIN 1. N/C	PIN 1. ANODE	PIN 1. CATHODE
2. MT2	COLLECTOR	CATHODE	2. CATHODE	ANODE
GATE	EMITTER	ANODE	RESISTOR ADJUST	3. CATHODE
4. MT2	COLLECTOR	CATHODE	4. CATHODE	4. ANODE


4. CATHODE

4. ANODE

4. ANODE

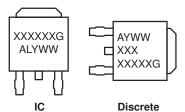
SOLDERING FOOTPRINT*

DRAIN

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- IOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
- MENSIONS b3, L3 and Z.


 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H
- PLANE H.
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90	REF
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location = Wafer Lot = Year WW = Work Week = Pb-Free Package G

*This information is generic. Please refer to device data sheet for actual part marking.

ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing)
NGTB03N60R2DT4G	AYWW GTB 0360RG	DPAK (SINGLE GAUGE) (Pb-Free / Halogen Free)	2500 / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent re