: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NGTB25N120FL2WG

IGBT - Field Stop II

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop II Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co-packaged free wheeling diode with a low forward voltage.

Features

- Extremely Efficient Trench with Field Stop Technology
- $\mathrm{T}_{\mathrm{Jmax}}=175^{\circ} \mathrm{C}$
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- $10 \mu \mathrm{~s}$ Short Circuit Capability
- These are Pb -Free Devices

Typical Applications

- Solar Inverter
- Uninterruptible Power Inverter Supplies (UPS)
- Welding

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	$\mathrm{V}_{\text {CES }}$	1200	V
Collector current @ Tc $=25^{\circ} \mathrm{C}$ @ $\mathrm{Tc}=100^{\circ} \mathrm{C}$	I_{c}	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	A
Pulsed collector current, $\mathrm{T}_{\text {pulse }}$ limited by $\mathrm{T}_{\mathrm{Jmax}}$	$\mathrm{I}_{\text {CM }}$	100	A
Diode forward current @ $\mathrm{Tc}=25^{\circ} \mathrm{C}$ @ $\mathrm{Tc}=100^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {F }}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	A
Diode pulsed current, $\mathrm{T}_{\text {pulse }}$ limited by $\mathrm{T}_{\text {Jmax }}$	$\mathrm{I}_{\text {F }}$	100	A
Gate-emitter voltage Transient gate-emitter voltage ($\mathrm{T}_{\text {pulse }}=5 \mu \mathrm{~s}, \mathrm{D}<0.10$)	$\mathrm{V}_{\text {GE }}$	$\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$	V
Power Dissipation @ $\mathrm{Tc}=25^{\circ} \mathrm{C}$ @ $\mathrm{Tc}=100^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 385 \\ & 192 \end{aligned}$	W
Short Circuit Withstand Time $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	T_{SC}	10	$\mu \mathrm{s}$
Operating junction temperature range	T_{J}	-55 to +175	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +175	${ }^{\circ} \mathrm{C}$
Lead temperature for soldering, $1 / 8^{\prime \prime}$ from case for 5 seconds	TSLD	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com
25 A, 1200 V
$\mathrm{V}_{\text {CEsat }}=2.0 \mathrm{~V}$
$\mathrm{E}_{\text {off }}=0.60 \mathrm{~mJ}$

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB25N120FL2WG	TO-247 (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$\mathrm{R}_{\text {өJC }}$	0.39	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance junction-to-case, for Diode	$\mathrm{R}_{\text {өJC }}$	0.59	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance junction-to-ambient	$\mathrm{R}_{\text {өJA }}$	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{j}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
STATIC CHARACTERISTIC						
Collector-emitter breakdown voltage, gate-emitter short-circuited	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	$\mathrm{V}_{\text {(BR)CES }}$	1200	-	-	V
Collector-emitter saturation voltage	$\begin{gathered} \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {CEsat }}$	-	$\begin{aligned} & 2.00 \\ & 2.40 \end{aligned}$	2.40	V
Gate-emitter threshold voltage	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}=400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{GE} \text { (th) }}$	4.5	5.5	6.5	V
Collector-emitter cut-off current, gateemitter short-circuited	$\begin{gathered} V_{G E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V}, \mathrm{~T}_{J}=175^{\circ} \mathrm{C} \end{gathered}$	$I_{\text {CES }}$	-	$\stackrel{-}{2.5}$	0.4 -	mA
Gate leakage current, collector-emitter short-circuited	$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$	$I_{\text {GES }}$	-	-	200	nA

Input capacitance	$\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {ies }}$	-	4420	-	pF
Output capacitance		$\mathrm{C}_{\text {oes }}$	-	151	-	
Reverse transfer capacitance		$\mathrm{C}_{\text {res }}$	-	81	-	
Gate charge total	$\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	Q_{g}	-	178	-	nC
Gate to emitter charge		Q_{ge}	-	39	-	
Gate to collector charge		Q_{gc}	-	83	-	

SWITCHING CHARACTERISTIC, INDUCTIVE LOAD

Turn-on delay time	$\begin{gathered} \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A} \\ \mathrm{R}_{\mathrm{g}}=10 \Omega \\ \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} / 15 \mathrm{~V} \end{gathered}$	$\mathrm{t}_{\text {d(on) }}$	-	87	-	ns
Rise time		t_{r}	-	28	-	
Turn-off delay time		$\mathrm{t}_{\text {(off) }}$	-	179	-	
Fall time		t_{f}	-	136	-	
Turn-on switching loss		$\mathrm{E}_{\text {on }}$	-	1.95	-	mJ
Turn-off switching loss		$\mathrm{E}_{\text {off }}$	-	0.60	-	
Total switching loss		$\mathrm{E}_{\text {ts }}$	-	2.55	-	
Turn-on delay time	$\begin{gathered} \mathrm{T}_{J}=150^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A} \\ \mathrm{R}_{\mathrm{g}}=10 \Omega \\ \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} / 15 \mathrm{~V} \end{gathered}$	$\mathrm{t}_{\text {d(on) }}$	-	84	-	ns
Rise time		t_{r}	-	29	-	
Turn-off delay time		$\mathrm{t}_{\text {(off) }}$	-	185	-	
Fall time		t_{f}	-	245	-	
Turn-on switching loss		$\mathrm{E}_{\text {on }}$	-	2.39	-	mJ
Turn-off switching loss		$\mathrm{E}_{\text {off }}$	-	1.26	-	
Total switching loss		$\mathrm{E}_{\text {ts }}$	-	3.65	-	

DIODE CHARACTERISTIC

Forward voltage	$\begin{gathered} V_{G E}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$	V_{F}	-	$\begin{aligned} & 2.10 \\ & 2.30 \end{aligned}$	2.60	V
Reverse recovery time	$\begin{gathered} \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \\ \mathrm{di}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	t_{rr}	-	154	-	ns
Reverse recovery charge		Q_{rr}	-	1.3	-	$\mu \mathrm{C}$
Reverse recovery current		$\mathrm{I}_{\text {rrm }}$	-	15	-	A

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NGTB25N120FL2WG

TYPICAL CHARACTERISTICS

Figure 1. Output Characteristics

Figure 3. Output Characteristics

Figure 5. $\mathrm{V}_{\mathrm{CE}(\text { sat })} \mathrm{vs} . \mathrm{T}_{\mathrm{J}}$

Figure 2. Output Characteristics

Figure 4. Typical Transfer Characteristics

Figure 6. Typical Capacitance

NGTB25N120FL2WG

TYPICAL CHARACTERISTICS

Figure 7. Diode Forward Characteristics

Figure 9. Switching Loss vs. Temperature

Figure 11. Switching Loss vs. IC

Figure 8. Typical Gate Charge

Figure 10. Switching Time vs. Temperature

Figure 12. Switching Time vs. IC

NGTB25N120FL2WG

TYPICAL CHARACTERISTICS

Figure 13. Switching Loss vs. Rg

Figure 15. Switching Loss vs. V_{CE}

Figure 17. Safe Operating Area

Figure 14. Switching Time vs. Rg

Figure 16. Switching Time vs. V_{CE}

Figure 18. Reverse Bias Safe Operating Area

NGTB25N120FL2WG

TYPICAL CHARACTERISTICS

Figure 19. IGBT Die Self-heating Square-wave Duty Cycle Transient Thermal Response

Figure 20. Diode Die Self-heating Square-wave Duty Cycle Transient Thermal Response

Figure 21. Collector Current vs. Switching Frequency

Figure 22. Test Circuit for Switching Characteristics

NGTB25N120FL2WG

Figure 23. Definition of Turn On Waveform

NGTB25N120FL2WG

Figure 24. Definition of Turn Off Waveform

PACKAGE DIMENSIONS

TO-247
CASE 340AL
ISSUE C

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. SLOT REQUIRED, NOTCH MAY BE ROUNDED.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
5. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.
6. \varnothing P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91.
7. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BYL1.
BYL1.

DIM	MILLIMETERS	
	MIN	MAX
A	4.70	5.30
A1	2.20	2.60
b	1.00	1.40
b2	1.65	2.35
b4	2.60	3.40
c	0.40	0.80
D	20.80	21.34
E	15.50	16.25
E2	4.32	5.49
e	5.45	BSC
F	2.655	---
L	19.80	20.80
L1	3.81	4.32
P	3.55	3.65
Q	5.40	
S	6.20	

Abstract

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

