

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







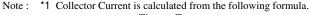
# N-Channel IGBT With Low VF Switching Diode 600V, 30A, VCE(sat);1.4V



http://onsemi.com

#### **Features**

- IGBT VCE(sat)=1.4V typ. (IC=30A, VGE=15V)
- IGBT IC=100A (Tc=25°C)
- IGBT tf=80ns typ.
- Low switching loss in higher frequency applications
- Maximum junction temperature Tj=175°C
- Diode V<sub>F</sub>=1.7V typ. (I<sub>F</sub>=30A)
- Diode  $t_{rr}$ =70ns typ.
- 5µs short circuit capability
- Pb-free, Halogen-free and RoHS Compliance

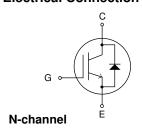

#### **Applications**

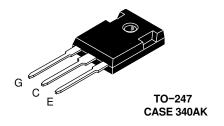
• Power factor correction of white goods appliance

#### **Specifications**

**Absolute Maximum Ratings** at Ta = 25°C, Unless otherwise specified

| Paramete                      | Symbol             | Value       | Unit |   |
|-------------------------------|--------------------|-------------|------|---|
| Collector to Emitter Voltage  |                    | VCES        | V    |   |
| Gate to Emitter Voltage       | V <sub>GES</sub>   | ±20         | V    |   |
| Collector Current (DC)        | @Tc=25°C *2        | 11          | 100  | Α |
| Limited by Tjmax              | @Tc=100°C *2       | IC *1       | 30   | Α |
| Pulsed collector current,     | OT 10000 t2        |             |      | Α |
| tp=100ms limited by Tjmax     | @Tc=100°C *2       | lCpulse     | 60   |   |
| Pulsed collector current,     | I <sub>Cpeak</sub> | 000         | ٨    |   |
| tp=1ms limited by Tjmax       |                    | 232         | Α    |   |
| Diode Average Output Curr     | ent                | IO          | 30   | Α |
| Power Dissipation             | _                  | 205         |      |   |
| Tc=25°C (Our ideal heat dissi | PD                 | 225         | W    |   |
| Junction Temperature          | Tj                 | 175         | °C   |   |
| Storage Temperature           | Tstg               | –55 to +175 | °C   |   |





$$I_{C}(Tc) = \frac{Tjmax - Tc}{R_{th}(j-c) \times V_{CE}(sat) (I_{C}(Tc))}$$

\*2 Our condition is radiation from backside.

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminum.

## Electrical Connection





#### Marking



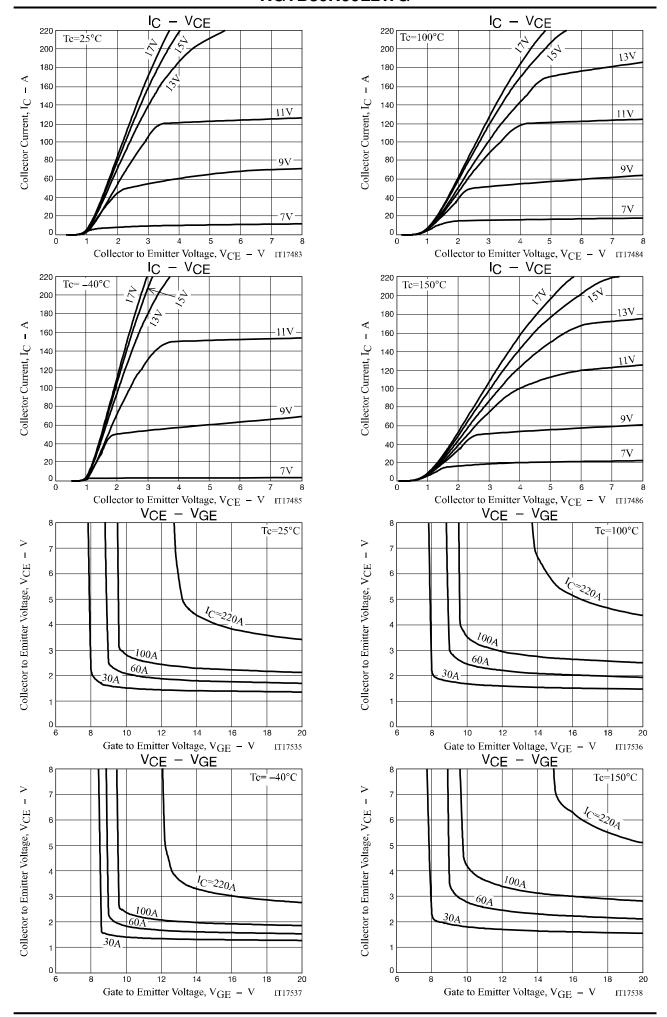
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

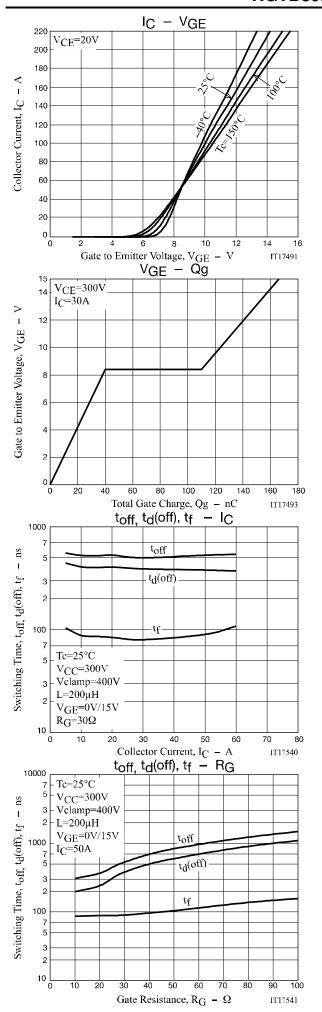
#### ORDERING INFORMATION

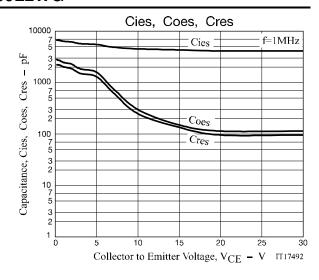
See detailed ordering and shipping information on page 8 of this data sheet.

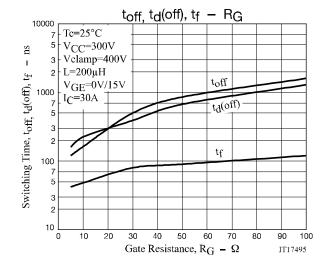
#### **Electrical Characteristics** at Ta = 25°C, Unless otherwise specified

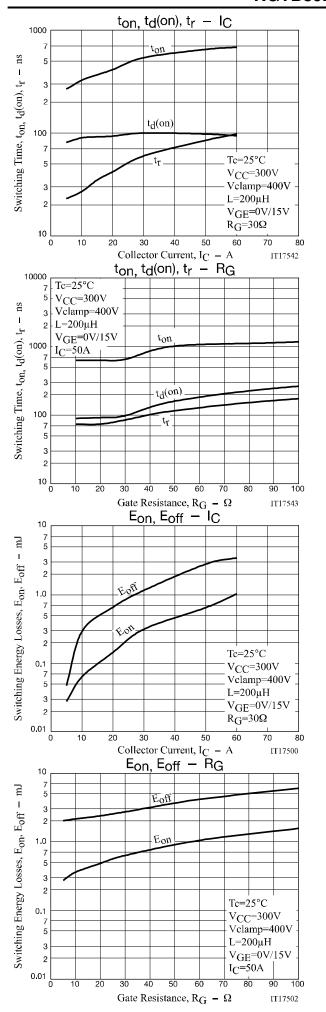
| D                                       | O. mada ad            | Conditions                                                                            |          | Value |       |      | 11.2 |
|-----------------------------------------|-----------------------|---------------------------------------------------------------------------------------|----------|-------|-------|------|------|
| Parameter                               | Symbol                |                                                                                       |          | min   | typ   | max  | Unit |
| Collector to Emitter Breakdown Voltage  | V(BR)CES              | I <sub>C</sub> =500μA, V <sub>GE</sub> =0V                                            |          | 600   |       |      | ٧    |
| 0.11                                    |                       | V <sub>CE</sub> =600V, V <sub>GE</sub> =0V T <sub>C</sub> =25°C T <sub>C</sub> =150°C | Tc=25°C  |       |       | 10   | μΑ   |
| Collector to Emitter Cut off Current    | ICES                  |                                                                                       |          |       | 1     | mA   |      |
| Gate to Emitter Leakage Current         | IGES                  | V <sub>GE</sub> =±20V, V <sub>CE</sub> =0V                                            |          |       |       | ±100 | nA   |
| Gate to Emitter Threshold Voltage       | V <sub>GE</sub> (th)  | V <sub>CE</sub> =20V, I <sub>C</sub> =250μA                                           |          | 4.5   |       | 6.5  | ٧    |
|                                         | V <sub>CE</sub> (sat) | V <sub>GE</sub> =15V, I <sub>C</sub> =30A                                             | Tc=25°C  |       | 1.4   | 1.6  | V    |
| Collector to Emitter Saturation Voltage |                       |                                                                                       | Tc=150°C |       | 1.7   |      | ٧    |
|                                         |                       | V <sub>GE</sub> =15V, I <sub>C</sub> =50A                                             | Tc=25°C  |       | 1.65  |      | V    |
| Diode Forward Voltage                   | VF                    | IF=30A                                                                                |          |       | 1.7   |      | ٧    |
| Input Capacitance                       | Cies                  |                                                                                       |          |       | 4130  |      | pF   |
| Output Capacitance                      | Coes                  | V <sub>CE</sub> =20V, f=1MHz                                                          |          |       | 114   |      | pF   |
| Reverse Transfer Capacitance            | Cres                  | 1                                                                                     |          |       | 96    |      | pF   |
| Turn-ON Delay Time                      | t <sub>d</sub> (on)   |                                                                                       |          |       | 100   |      | ns   |
| Rise Time                               | t <sub>r</sub>        | V <sub>CC</sub> =300V, I <sub>C</sub> =30A                                            |          |       | 60    |      | ns   |
| Turn-ON Time                            | ton                   |                                                                                       |          |       | 540   |      | ns   |
| Turn-OFF Delay Time                     | t <sub>d</sub> (off)  | R <sub>G</sub> =30Ω, L=200μH                                                          |          |       | 390   |      | ns   |
| Fall Time                               | tf                    | VGE=0V/15V Vclamp=400V See Fig.1, See Fig.2                                           |          |       | 80    |      | ns   |
| Turn-OFF Time                           | toff                  |                                                                                       |          |       | 500   |      | ns   |
| Turn-ON Energy                          | Eon                   |                                                                                       |          |       | 0.31  |      | mJ   |
| Turn-OFF Energy                         | Eoff                  |                                                                                       |          |       | 1.14  |      | mJ   |
| Turn-ON Delay Time                      | t <sub>d</sub> (on)   |                                                                                       |          |       | 98    |      | ns   |
| Rise Time                               | t <sub>r</sub>        |                                                                                       |          |       | 85    |      | ns   |
| Turn-ON Time                            | ton                   | V <sub>CC</sub> =300V, I <sub>C</sub> =50A                                            |          |       | 650   |      | ns   |
| Turn-OFF Delay Time                     | t <sub>d</sub> (off)  | R <sub>G</sub> =30Ω, L=200μH                                                          |          |       | 380   |      | ns   |
| Fall Time                               | tf                    | V <sub>GE</sub> =0V/15V                                                               |          |       | 90    |      | ns   |
| Turn-OFF Time                           | toff                  | Vclamp=400V See Fig.1, See Fig.2                                                      |          |       | 530   |      | ns   |
| Turn-ON Energy                          | Eon                   |                                                                                       |          |       | 0.638 |      | mJ   |
| Turn-OFF Energy                         | Eoff                  |                                                                                       |          |       | 2.755 |      | mJ   |
| Total Gate Charge                       | Qg                    | V <sub>CE</sub> =300V, V <sub>GE</sub> =15V, I <sub>C</sub> =30A                      |          |       | 166   |      | nC   |
| Gate to Emitter Charge                  | Qge                   |                                                                                       |          |       | 40    |      | nC   |
| Gate to Collector "Miller" Charge       | Qgc                   |                                                                                       |          |       | 70    |      | nC   |
| Diode Reverse Recovery Time             | t <sub>rr</sub>       | I <sub>F</sub> =10A, di/dt=100A/μs, V <sub>CC</sub> =50V, See Fig.3                   |          |       | 70    |      | ns   |

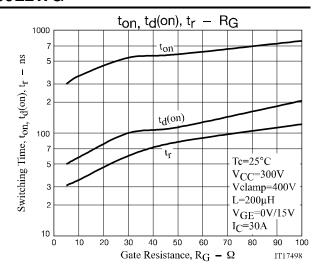

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

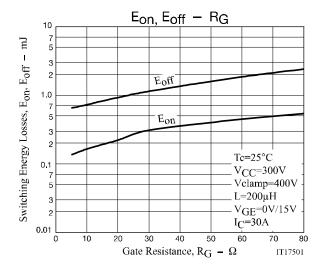

#### Thermal Characteristics at Ta = 25°C, Unless otherwise specified

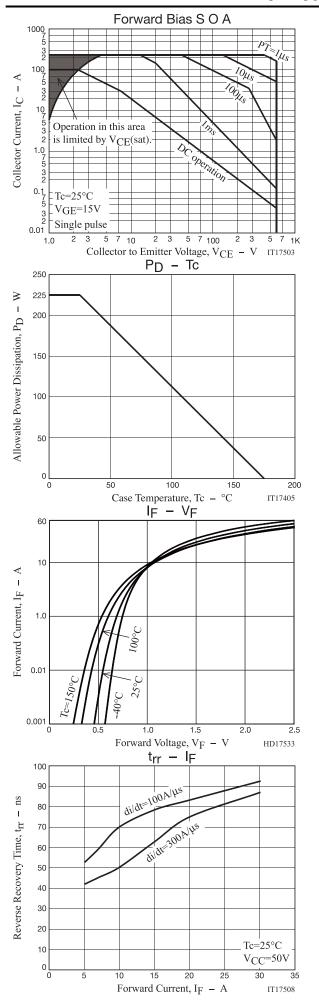

| Parameter                                   | Symbol           | Conditions                                       | Value | Unit  |
|---------------------------------------------|------------------|--------------------------------------------------|-------|-------|
| Thermal Resistance IGBT (Junction to Case)  | Rth(j-c) (IGBT)  | Tc=25°C (Our ideal heat dissipation condition)*2 | 0.67  | °C /W |
| Thermal Resistance Diode (Junction to Case) | Rth(j-c) (Diode) | Tc=25°C (Our ideal heat dissipation condition)*2 | 1.5   | °C /W |
| Thermal Resistance (Junction to Ambient)    | Rth(j-a)         |                                                  | 41    | °C /W |

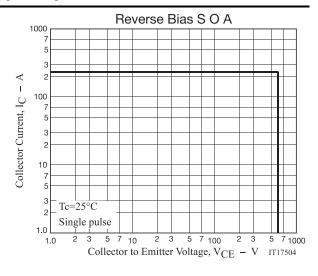

Note: \*2 Our condition is radiation from backside.

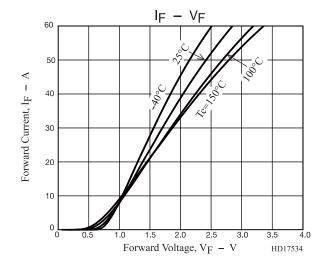

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminum.



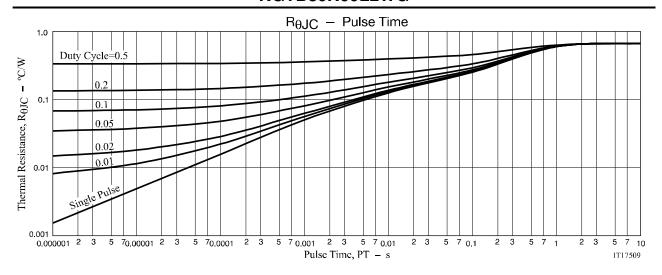




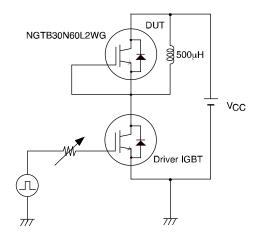








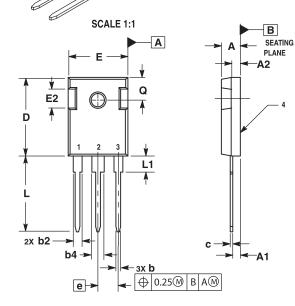

Fig.1 Switching Time Test Circuit

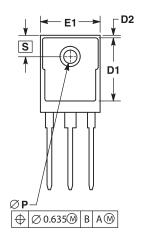


**Fig.2 Timing Chart** 



Fig.3 Reverse Recovery Time Test Circuit





#### **Package Dimensions**

NGTB30N60L2WG

**TO-247** 

## CASE 340AK **ISSUE O** unit: mm





- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
  SLOT REQUIRED, NOTCH MAY BE ROUNDED.
  THERMAL PAD CONTOUR OPTIONAL WITHIN DIMEN-
- SIONS D1 AND E1.
  LEAD FINISH UNCONTROLLED WITHIN L1.
- $^{\mbox{\it Q}}\mbox{\it P}$  To have a maximum draft angle of 1.5° to the top of the part with a maximum diameter

|     | MILLIMETERS |          | INCHES    |           |  |
|-----|-------------|----------|-----------|-----------|--|
| DIM | MIN         | MAX      | MIN       | MAX       |  |
| Α   | 4.70        | 5.31     | 0.185     | 0.209     |  |
| A1  | 2.21        | 2.59     | 0.087     | 0.102     |  |
| A2  | 1.50        | 2.49     | 0.059     | 0.098     |  |
| b   | 1.00        | 1.40     | 0.039     | 0.055     |  |
| b2  | 1.65        | 2.39     | 0.065     | 0.094     |  |
| b4  | 2.59        | 3.43     | 0.102     | 0.135     |  |
| С   | 0.38        | 0.89     | 0.015     | 0.035     |  |
| D   | 20.80       | 21.46    | 0.819     | 0.845     |  |
| D1  | 13.08       |          | 0.515     |           |  |
| D2  | 0.51        | 1.35     | 0.020     | 0.053     |  |
| Е   | 15.49       | 16.26    | 0.610     | 0.640     |  |
| E1  | 13.46       |          | 0.53      |           |  |
| E2  | 4.32        | 5.49     | 0.170     | 0.216     |  |
| е   | 5.46        | 5.46 BSC |           | 0.215 BSC |  |
| L   | 19.81       | 20.32    | 0.780     | 0.800     |  |
| L1  | -           | 4.50     | -         | 0.177     |  |
| Р   | 3.56        | 3.66     | 0.140     | 0.144     |  |
| Q   | 5.38        | 6.20     | 0.212     | 0.244     |  |
| S   | 6.15 BSC    |          | 0.242 BSC |           |  |

#### **Ordering & Package Information**

| Device        | Package   | Shipping          | note                           |
|---------------|-----------|-------------------|--------------------------------|
| NGTB30N60L2WG | TO-247-3L | 30<br>pcs. / tube | Pb-Free<br>and<br>Halogen Free |

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.