imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss.

Features

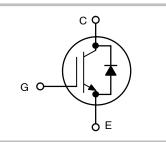
- Low Saturation Voltage using Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- 5 µs Short–Circuit Capability
- These are Pb-Free Devices

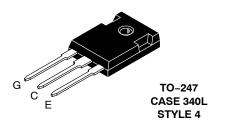
Typical Applications

- Solar Inverters
- Uninterruptable Power Supply (UPS)

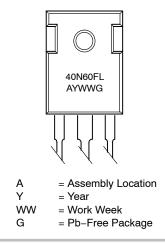
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit			
Collector-emitter voltage	V _{CES}	600	V			
Collector current @ Tc = 25°C @ Tc = 100°C	Ι _C	80 40	A			
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	160	A			
Diode Forward Current @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$	l _F	80 40	A			
Diode Pulsed Current T _{pulse} Limited by T _{Jmax}	I _{FM}	160	А			
Short–circuit withstand time V_{GE} = 15 V, V_{CE} = 300 V, $T_J \le +150^{\circ}C$	t _{SC}	5	μs			
Gate-emitter voltage Transient Gate Emitter Voltage ($t_p = 5 \ \mu s, D < 0.010$)	V _{GE}	±20 ±30	V			
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	257 102	W			
Operating junction temperature range	TJ	-55 to +150	°C			
Storage temperature range	T _{stg}	–55 to +150	°C			
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C			


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®


http://onsemi.com

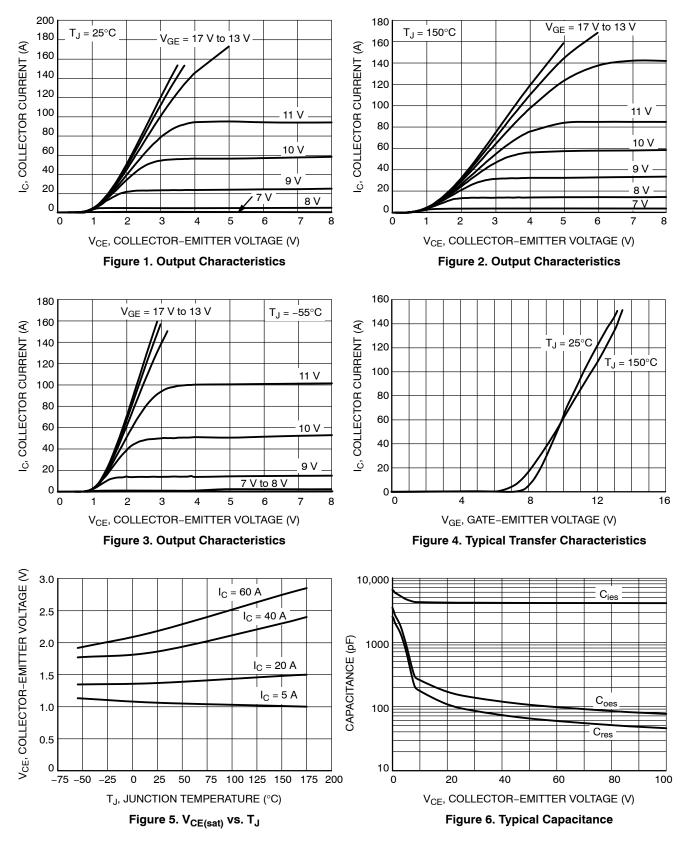
40 A, 600 V V_{CEsat} = 1.85 V

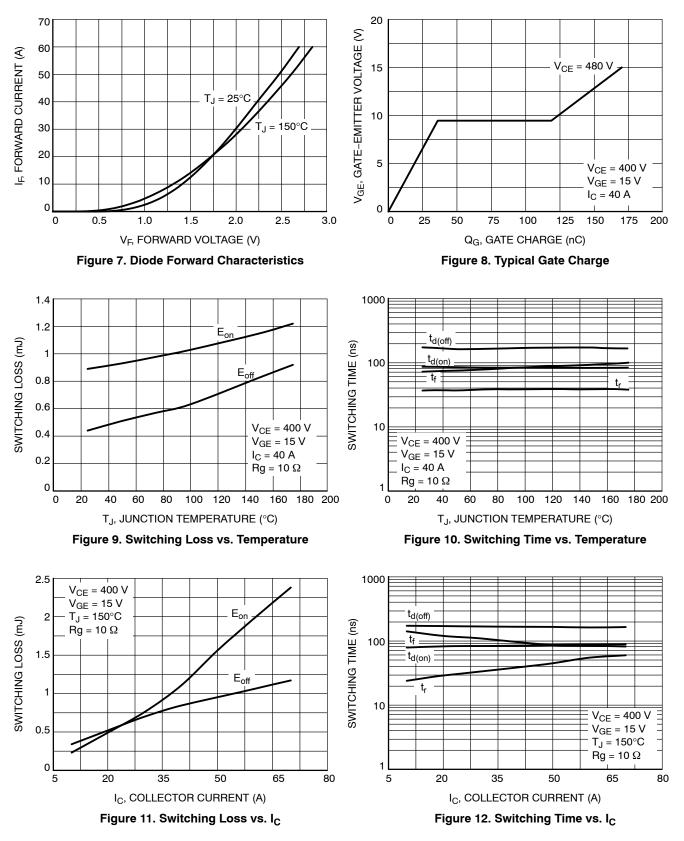
MARKING DIAGRAM

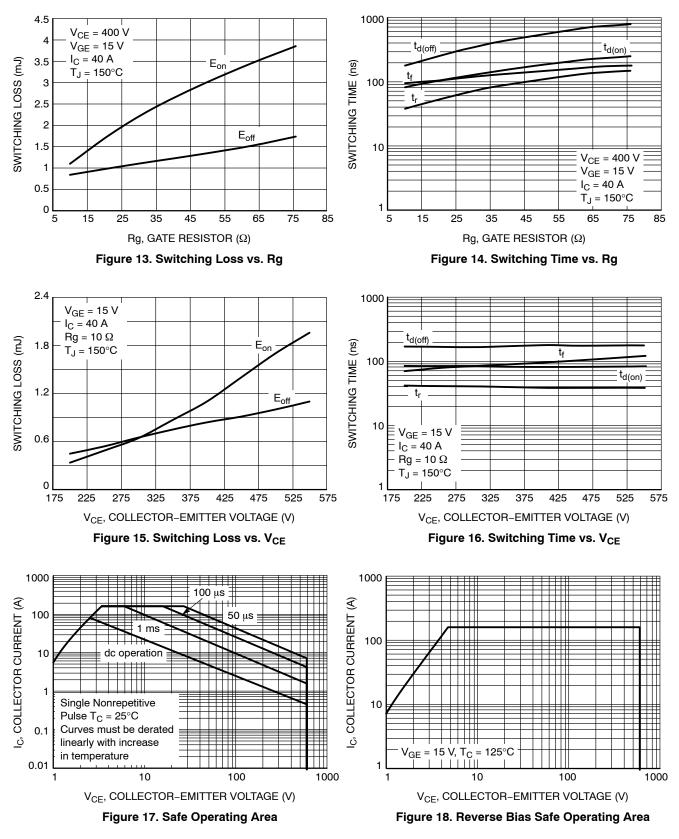
ORDERING INFORMATION

Device	Package	Shipping
NGTB40N60FLWG	TO–247 (Pb–Free)	30 Units / Rail

THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ ext{ heta}JC}$	0.470	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ ext{ heta}JC}$	1.06	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W


ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC	-	-	-	-	-	
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I _C = 500 μ A	V _{(BR)CES}	600	_	_	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 40 A V_{GE} = 15 V, I _C = 40 A, T _J = 150°C	V _{CEsat}	1.6 _	1.85 2.3	2.1 _	V
Gate-emitter threshold voltage	V_{GE} = V_{CE} , I_C = 200 μ A	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$\label{eq:VGE} \begin{array}{l} V_{GE} = 0 \ V, \ V_{CE} = 600 \ V \\ V_{GE} = 0 \ V, \ V_{CE} = 600 \ V, \ T_{J} = 150^{\circ}C \end{array}$	I _{CES}			0.2 2	mA
Gate leakage current, collector-emitter short-circuited	V_{GE} = 20 V , V_{CE} = 0 V	I _{GES}	-	-	100	nA
DYNAMIC CHARACTERISTIC						
Input capacitance		C _{ies}	-	4200	_	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	170	-	
Reverse transfer capacitance	1	C _{res}	-	110	_	
Gate charge total		Qg	-	171	-	nC
Gate to emitter charge	V _{CE} = 480 V, I _C = 40 A, V _{GE} = 15 V	Q _{ge}	-	36	-	
Gate to collector charge		Q _{gc}	-	83	-	
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD					
Turn-on delay time		t _{d(on)}	-	85	-	ns
Rise time	1	t _r	-	37	_	
Turn-off delay time	T _J = 25°C	t _{d(off)}	-	174	_	
Fall time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 40 \text{ A}$ $\text{R}_{g} = 10 \Omega$	t _f	-	73	-	
Turn-on switching loss	$V_{GE} = 0 V/15 V$	Eon	-	0.89	-	mJ
Turn-off switching loss	1	E _{off}	-	0.44	-	
Total switching loss	1	E _{ts}	-	1.33	-	
Turn-on delay time		t _{d(on)}	-	82	-	ns
Rise time	1	t _r	-	38	-	
Turn-off delay time	T _J = 150°C	t _{d(off)}	-	179	-	
Fall time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 40 \text{ A}$ $R_{g} = 10 \Omega$	t _f	-	95	-	
Turn-on switching loss	$R_g = 10 \Omega$ $V_{GE} = 0 V/ 15 V$	E _{on}	-	1.10	-	mJ
Turn-off switching loss]	E _{off}	-	0.84	I	
Total switching loss]	E _{ts}	-	1.94	-	

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
DIODE CHARACTERISTIC						
Forward voltage	V_{GE} = 0 V, I _F = 40 A V_{GE} = 0 V, I _F = 40 A, T _J = 150°C	V _F	1.55 -	2.2 2.3	2.60 -	V
Reverse recovery time	T,₁ = 25°C	t _{rr}	-	77	-	ns
Reverse recovery charge	I _F = 40 Å, V _R = 200 V	Q _{rr}	-	0.35	-	μC
Reverse recovery current	di _F /dt = 200 A/µs	I _{rrm}	-	7	-	А

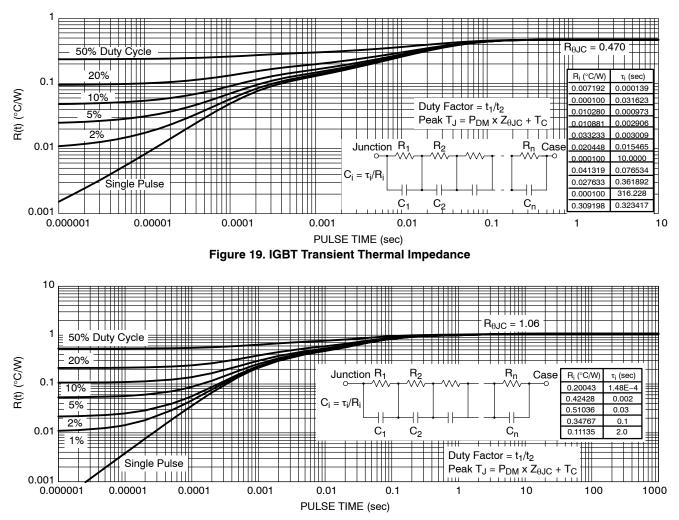


Figure 20. Diode Transient Thermal Impedance

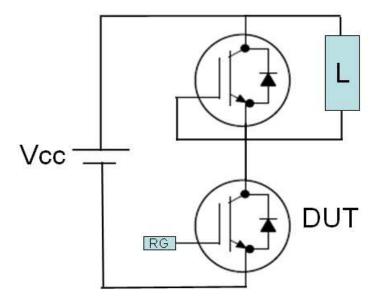
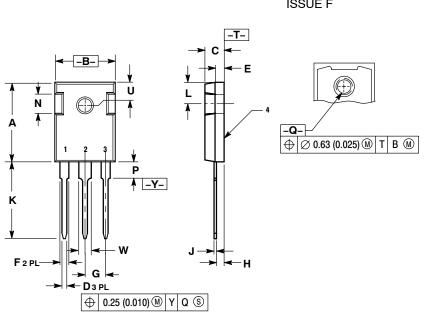



Figure 21. Test Circuit for Switching Characteristics

PACKAGE DIMENSIONS

TO-247 CASE 340L-02 ISSUE F

DIMENSIONING AND TOLERANCING PER A Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.				
	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	20.32	21.08	0.800	8.30
В	15.75	16.26	0.620	0.640
C	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
Е	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45	BSC	0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
K	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15	BSC	0.242	BSC
W	2.87	3.12	0.113	0.123

STYLE 4: PIN 1. GATE

NOTES:

2. COLLECTOR 3. EMITTER

4. COLLECTOR

ON Semiconductor and **())** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized subject to all applicable copyright as negligent regarding the design or manufacture of the part. SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative