

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IGBT - Inverter Welding

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for welding applications. Incorporated into the device is a soft and fast co-packaged free wheeling diode with a low forward voltage.

Features

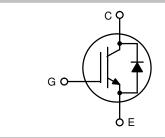
- $T_{Jmax} = 175^{\circ}C$
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- 5 µs Short–Circuit Capability
- These are Pb-Free Devices

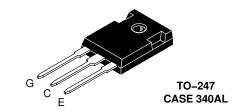
Typical Applications

• Welding

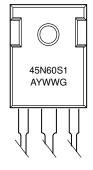
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V_{CES}	600	V
Collector current @ Tc = 25°C @ Tc = 100°C	I _C	90 45	Α
Diode Forward Current @ Tc = 25°C @ Tc = 100°C	I _F	90 45	Α
Diode Pulsed Current T _{PULSE} Limited by T _J Max	I _{FM}	180	Α
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	180	Α
Short–circuit withstand time $V_{GE} = 15 \text{ V}, V_{CE} = 400 \text{ V}, $ $T_J \le +150^{\circ}\text{C}$	t _{SC}	5	μS
Gate-emitter voltage	V_{GE}	±20	V
Transient gate-emitter voltage (T _{PULSE} = 5 μ s, D < 0.10)		±30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	300 150	W
Operating junction temperature range	TJ	–55 to +175	°C
Storage temperature range	T _{stg}	-55 to +175	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


www.onsemi.com

45 A, 600 V **V_{CEsat}** = 2.00 **V** $E_{OFF} = 0.53 \text{ mJ}$

MARKING DIAGRAM

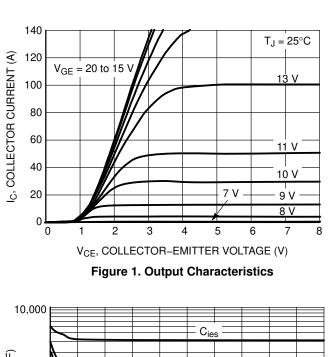
= Assembly Location

= Year WW = Work Week = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB45N60S1WG	TO-247 (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ heta JC}$	0.50	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ heta JC}$	1.00	°C/W
Thermal resistance junction-to-ambient	$R_{ heta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

$ \begin{array}{c} \text{gate-emitter short-circuited} \\ \hline \text{Collector-emitter saturation voltage} \\ \hline \text{Collector-emitter threshold voltage} \\ \hline \text{Collector-emitter threshold voltage} \\ \hline \text{Collector-emitter cut-off current, gate-emitter short-circuited} \\ \hline \text{Collector-emitter cut-off current, gate-emitter short-circuited} \\ \hline \text{Collector-emitter short-circuited} \\ \hline \\ \hline \text{Collector-emitter cut-off current, gate-emitter short-circuited} \\ \hline \text{Collector-emitter short-circuited} \\ \hline \\ \hline \text{Collector-emitter charge} \\ \hline \text{Cate leakage current, collector-emitter short-circuited} \\ \hline \\ \hline \text{Collector-emitter charge} \\ \hline \hline \text{Collector charace} \\ \hline \\ \hline \text{Collector-emitter charge} \\ \hline \text{Collector charace} \\ \hline \hline \text{Collector charge} \\ \hline \hline Collector ch$	V(BR)CES VCEsat VGE(th) ICES IGES Coes Cres Qg Qge Qgc td(on) tr	600 1.50 - 4.5	2.00 2.60 5.5 - - - 3115 149 88 125 32 65	- 2.40 - 6.5 0.5 4.0 200	V V V mA nA pF
$ \begin{array}{c} \text{gate-emitter short-circuited} \\ \hline \text{Collector-emitter saturation voltage} \\ \hline \text{Collector-emitter saturation voltage} \\ \hline \text{Collector-emitter threshold voltage} \\ \hline \text{Collector-emitter cut-off current, gate-emitter short-circuited} \\ \hline \text{Collector-emitter short-circuited} \\ \hline \text{Collector-emitter cut-off current, gate-emitter short-circuited} \\ \hline \text{Collector-emitter short-circuited} \\ \hline \textbf{Collector-emitter charge} \\ \hline \textbf{Collector-emitter charge} \\ \hline \textbf{Collector-emitter charge} \\ \hline \textbf{Collector charge} \\ \hline Collector charge$	VCEsat VGE(th) ICES IGES Coes Cres Qg Qge Qgc td(on) tr	1.50 - 4.5 - - - - - - -	2.60 5.5 3115 149 88 125 32 65	2.40 - 6.5 0.5 4.0 200	V V mA nA
$V_{GE} = 15 \text{ V, } I_{C} = 45 \text{ A, } T_{J} = 175^{\circ}\text{C}$ $Qate-emitter threshold voltage$ $V_{GE} = V_{CE}, I_{C} = 350 \mu\text{A}$ $V_{GE} = 0 \text{ V, } V_{CE} = 600 \text{ V}$ $V_{GE} = 0 \text{ V, } V_{CE} = 600 \text{ V}$ $V_{GE} = 0 \text{ V, } V_{CE} = 600 \text{ V, } V_{T} = 175^{\circ}\text{C}$ $Qate leakage current, collector-emitter short-circuited$ $PV_{A} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 480 \text{ V, } I_{C} = 45 \text{ A, } V_{GE} = 15 \text{ V}$ $V_{CE} = 480 \text{ V, } I_{C} = 45 \text{ A, } V_{GE} = 15 \text{ V}$ $V_{CE} = 400 \text{ V, } I_{C} = 45 \text{ A, } I_{C} = 45 \text{ A}$ $V_{CE} = 10 \text{ V}$ $V_{CE} = 400 \text{ V, } I_{C} = 45 \text{ A}$ $V_{CE} = 10 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 0 \text{ V}$ $V_{CE} = 20 \text{ V, } V_{CE} = 10 \text{ V}$ $V_{CE} = 480 \text{ V, } I_{C} = 45 \text{ A}$ $V_{CE} = 400 \text{ V, } I_{C} = 45 \text{ A}$ $V_{CE} = 10 \text{ V}$ $V_{CE} = 10 \text{ V}$ $V_{CE} = 10 \text{ V}$ $V_{CE} = 10 \text{ V, } I_{C$	V _{GE(th)} I _{CES} I _{GES} C _{ies} C _{oes} C _{res} Q _g Q _{ge} Q _{gc} t _{d(on)} t _r	- 4.5 - - - - - - -	2.60 5.5 3115 149 88 125 32 65	- 6.5 0.5 4.0 200	V mA nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICES IGES Cies Coes Cres Qg Qge Qgc td(on) tr	- - - - - - -	- - 3115 149 88 125 32 65	0.5 4.0 200	nA pF
$ \begin{array}{c c} \text{Collector-emitter cut-off current, gate-emitter short-circuited} & V_{GE} = 0 \text{ V, } V_{CE} = 600 \text{ V} \\ V_{GE} = 0 \text{ V, } V_{CE} = 600 \text{ V, } V_{CE} = 600 \text{ V} \\ V_{GE} = 0 \text{ V, } V_{CE} = 600 \text{ V, } V_{CE} = 0 \text{ V} \\ \hline $	ICES IGES Cies Coes Cres Qg Qge Qgc td(on) tr	- - - - - - -	3115 149 88 125 32 65	- - - - - -	nA pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} C_{ies} \\ C_{oes} \\ C_{res} \\ \\ Q_g \\ Q_{ge} \\ \\ Q_{gc} \\ \\ \end{array}$	- - - - -	3115 149 88 125 32 65	- - - -	pF
	C_{oes} C_{res} Q_{g} Q_{ge} Q_{gc} $^{t}_{d(on)}$ t_{r}	- - - -	149 88 125 32 65	- - - -	
Output capacitance $V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ Reverse transfer capacitanceGate charge totalGate to emitter charge $V_{CE} = 480 \text{ V}, I_{C} = 45 \text{ A}, V_{GE} = 15 \text{ V}$ Gate to collector charge $V_{CE} = 480 \text{ V}, I_{C} = 45 \text{ A}, V_{GE} = 15 \text{ V}$ SWITCHING CHARACTERISTIC, INDUCTIVE LOADTurn-on delay time $T_{J} = 25^{\circ}\text{C}$ Fall time $T_{J} = 25^{\circ}\text{C}$ Fall time $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$ Turn-on switching loss $V_{GE} = 0 \text{ V}/15 \text{ V}$ Turn-on delay time $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$ Turn-off delay time $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$ Turn-off delay time $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$ Turn-on switching loss $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$ Turn-on switching loss $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$ Turn-on switching loss $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$ Turn-on switching loss $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$ Turn-on switching loss $V_{CC} = 400 \text{ V}, I_{C} = 45 \text{ A}$	C_{oes} C_{res} Q_{g} Q_{ge} Q_{gc} $^{t}_{d(on)}$ t_{r}	- - - -	149 88 125 32 65	- - - -	
Reverse transfer capacitance Gate charge total Gate to emitter charge Gate to collector charge SWITCHING CHARACTERISTIC, INDUCTIVE LOAD Turn-on delay time Rise time Turn-off delay time Fall time Turn-on switching loss Total switching loss Turn-on delay time Rise time Turn-on delay time Turn-off delay time Turn-off delay time Turn-off delay time Turn-off switching loss Total switching loss Turn-on delay time Rise time Turn-on delay time Fall time Turn-off delay time Fall time Turn-on switching loss Turn-on switching loss	C_{oes} C_{res} Q_{g} Q_{ge} Q_{gc} $^{t}_{d(on)}$ t_{r}	- - - -	88 125 32 65	- - -	nC
	Q _g Q _{ge} Q _{gc} t _{d(on)} t _r	- - -	125 32 65	- - -	nC
	Q _{ge} Q _{gc} t _{d(on)} t _r	-	32 65 72	-	nC
Gate to collector charge	$\begin{array}{c} Q_{gc} \\ \\ t_{d(on)} \\ \\ t_{r} \end{array}$	-	65 72	_	
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD Turn-on delay time Rise time Turn-off delay time Fall time Turn-on switching loss Turn-off switching loss Total switching loss Turn-on delay time Rise time Turn-off delay time Fall time Turn-off delay time Turn-off switching loss Turn-on delay time Turn-on delay time Turn-on delay time Turn-onf delay time Turn-onf delay time Turn-onf delay time Turn-on switching loss Turn-on switching loss	$\begin{array}{c} Q_{gc} \\ \\ t_{d(on)} \\ \\ t_{r} \end{array}$	_	72		
	t _r				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _r				
	t _r	-		-	ns
	t _{d(off)}		33	_	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	132	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t _f	_	68	-	
Total switching loss	E _{on}	_	1.25	-	mJ
Turn–on delay time Rise time $T_{J} = 150^{\circ}C$ $V_{CC} = 400 \text{ V, } I_{C} = 45 \text{ A}$ $R_{g} = 10 \Omega$ $V_{GE} = 0 \text{ V/ 15 V}$	E _{off}	_	0.53	-	
Rise time $T_{J} = 150^{\circ}C$ $V_{CC} = 400 \text{ V, } I_{C} = 45 \text{ A}$ $R_{g} = 10 \Omega$ $V_{GE} = 0 \text{ V/ 15 V}$	E _{ts}	-	1.78	-	
	t _{d(on)}	-	70	-	ns
Fall time $ \begin{array}{c} V_{CC} = \bar{4}00 \text{ V, } I_{C} = 45 \text{ A} \\ R_{g} = 10 \Omega \\ V_{GE} = 0 \text{ V/ } 15 \text{ V} \\ \end{array} $	t _r	-	38	-	
Turn–on switching loss $R_g = 10 \Omega V_{GE} = 0 \text{ V/ } 15 \text{ V}$	$t_{d(off)}$	_	135	-	
Turn–on switching loss V _{GE} = 0 V/ 15 V	t _f	_	88	-	
	E _{on}	_	1.59	-	mJ
Turn-off switching loss	E _{off}	-	0.88	-	
Total switching loss	E _{ts}	-	2.47	-	1
DIODE CHARACTERISTIC					
Forward voltage $ \begin{array}{c} V_{GE} = 0 \text{ V, I}_F = 45 \text{ A} \\ V_{GE} = 0 \text{ V, I}_F = 45 \text{ A, T}_J = 175^{\circ}\text{C} \\ \end{array} $	V_{F}	1.50 –	2.45 2.62	2.90 -	V
Reverse recovery time $T_{.I} = 25^{\circ}C$					
Reverse recovery charge $I_F = 45 \text{ Å}, V_R = 200 \text{ V}$	t _{rr}	_	70	-	ns
Reverse recovery current $di_F/dt = 200 \text{ A/}\mu\text{s}$	t _{rr}	-	70 272	-	ns nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

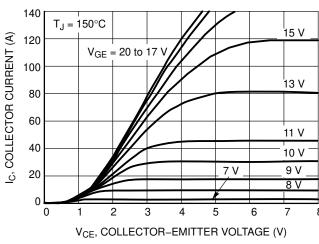
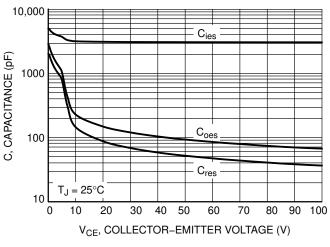



Figure 2. Output Characteristics

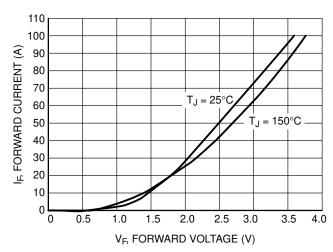
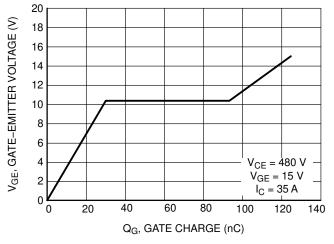



Figure 3. Typical Capacitance

Figure 4. Diode Forward Characteristics

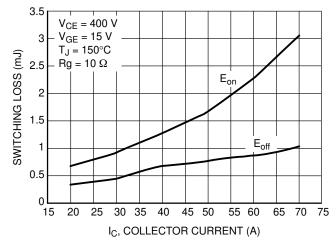


Figure 5. Typical Gate Charge

Figure 6. Switching Loss vs. I_C

TYPICAL CHARACTERISTICS

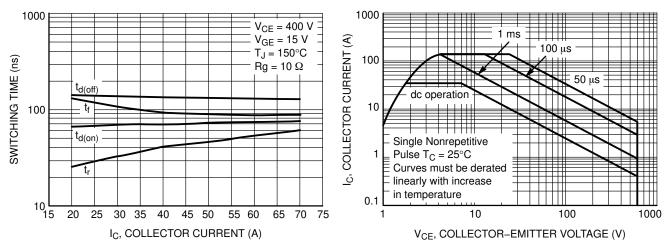


Figure 7. Switching Time vs. I_{C}

Figure 8. Safe Operating Area

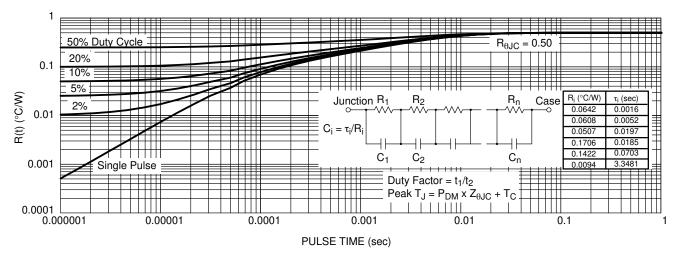


Figure 9. IGBT Transient Thermal Impedance

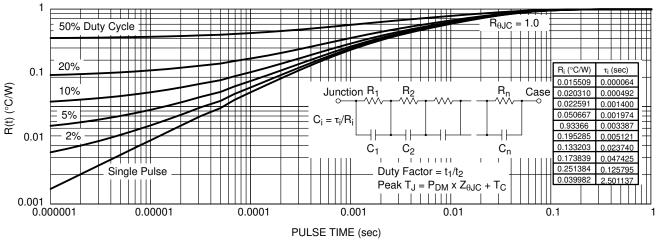
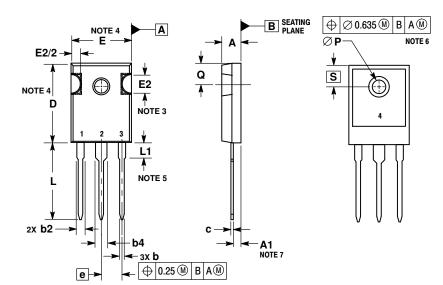



Figure 10. Diode Transient Thermal Impedance

PACKAGE DIMENSIONS

TO-247 CASE 340AL **ISSUE A**

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.

- SLOT REQUIRED, NOTCH MAY BE ROUNDED.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
- LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY
- ØP SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91.
- DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.70	5.30	
A1	2.20	2.60	
b	1.00	1.40	
b2	1.65	2.35	
b4	2.60	3.40	
С	0.40	0.80	
D	20.30	21.40	
E	15.50	16.25	
E2	4.32	5.49	
е	5.45 BSC		
L	19.80	20.80	
L1	3.50	4.50	
P	3.55	3.65	
Q	5.40	6.20	
S	6.15 BSC		

ON Semiconductor and the an are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative